

Seismic Design of Masonry

The Theory, The Codes and The Practice

John G Tawresey
KPFF Consulting Engineers [Retired]

March 13, 2017

International Masonry Institute -
Hawaii

1

Seismic Design of Masonry The Theory, The Codes and The Practice

John G Tawresey
KPFF Consulting Engineers [Retired]

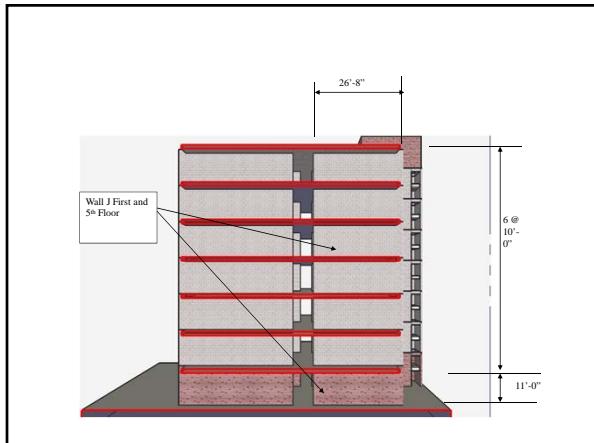
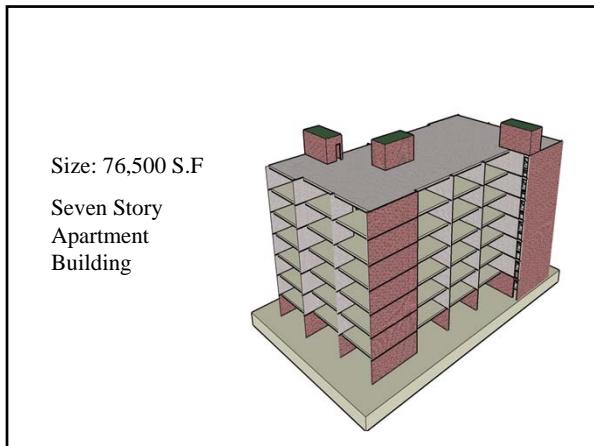
March 13, 2017

International Masonry Institute - Hawaii

1

Contents:

1. The Theory [ASD and SD]
2. The Code [2012 IBC, ASCE 7-10 and TMS 402-11]
3. The Examples



March 13, 2017

International Masonry Institute - Hawaii

2

Trial Design 4

Seven Story Apartment Building

- Design Problem Statement:
 - Design the wall J of the apartment at the base and the 5th floor.
 - Complete the design questionnaire at the end of the problem.
 - Assume a rigid diaphragm.
 - Assume the wall is a special reinforced masonry shear wall.
- Materials:
 - Concrete Masonry (different strengths can be used at the base and 5th floor).
 - Grade 60 reinforcement.
- Design Code:
 - 2006 IBC and ACI 530.1-05/ASCE 6-05/TMS 602-05 (2005 MSJC) Strength

Design Loads:

- Seismic Design Category D, $R = 5.0$, $\Omega_0 = 3.0$, $C_d = 3.5$, $T = .50$ sec. $SDS = 1.12$.
 $SD1 = .68$

Dead and live loads given.

Dead load includes partition and wall weight. The axial load is due to minor coupling in the model. It is not the E_v (vertical earthquake load).

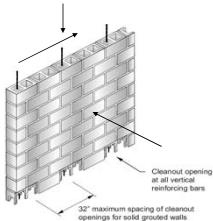
Fee Paid = \$750.00

Average = 8.4 hours

2 hour minimum to 16 hours max

Average \$ 89.28/hour

Experience varied from 2 to 30 years


Problem # 4	1	2	3	4	5	6
Education	MS	MS	MS	MS	MS	MS
Years w/ building design	10	3	20 +	3 - 10	0 - 3	3 - 10
Total years since BS		3	20 +	3 - 10	0 - 3	3 - 10
Experience w/ design masonry	None	Many	Many - no SD	None	Few	
High moisture hours	16	12	7	5	3	
Masonry strength at first	1500	1500	2200	2500	2500	2500
Wall Thickness	8"	8"	8"	12"	8"	8"
Trim steel at first	none		(6) # 5	(4) # 5	none	(1) # 7
Vertical reinforcement at first	# 4 @ 40	# 4 @ 24	# 5 @ 32	# 5 @ 24	# 4 @ 16	# 4 @ 32
Horizontal reinforcement at first	(2) # 5 @ 40	# 4 @ 24	(2) # 4 @ 48	(2) # 4 @ 40	# 4 @ 8	(2) # 4 @ 32
Max Axial at first	862	712	787	871	1133	838
Min Axial at first	374	512	512	387	387	371
Axial R. maximum	Not checked	Not checked	Not checked	Not checked	Not checked	Not checked
Factored moment at first	6175	6175	6175	6175	6175	6175
Factored shear at first	143	143	143	143	143	143

March 13, 2017

International Masonry Institute -
Hawaii

10

Most Masonry Design is about bending plus compression in walls – in-plane or out-of-plane

In-Plane

$$b \Rightarrow W$$

$$d \Rightarrow L$$

Out-of-Plane

$$b \Rightarrow L$$

$$d \Rightarrow W$$

March 13, 2017

International Masonry Institute -
Hawaii

11

Contents:

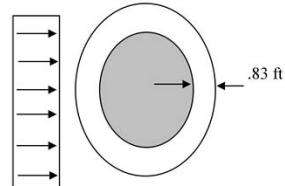
1. The Theory
2. The Code [2012 IBC, ASCE 7-10 and TMS 402-11]
3. The Examples

March 13, 2017

International Masonry Institute -
Hawaii

12

Tragans Column



If the column walls are .83 ft [10 in] thick, will the tower tip over in a 36 psf wind load applied to the projected area?

Neglect the weight above the 88.32 ft

Consider the base at the bottom of the 88.32 ft

88.32 ft Assume the column is constructed of marble weighing 150 pcf

March 13, 2017

International Masonry Institute -
Hawaii

13

Tragans Column

If the column walls are .83 ft [10 in] thick, will the tower tip over in a 36 psf wind load applied to the projected area?

Neglect the weight above the 88.32 ft

Consider the base at the bottom of the 88.32 ft

Assume the column is constructed of marble weighing 150 pcf

March 13, 2017 International Masonry Institute - Hawaii 13

Tragans Column

Projected Area: $88.32 \times 12 = 1060 \text{ ft}^2$	This seminar is not about loading, particularly wind. Consult ASCE 7 for more detailed analysis.
Wind Load: $1060 \times 36 = 38,200 \text{ Lb}$	Note: Circular sections wind loading includes positive pressure on the windward face due to stagnation and negative pressure on the leeward side due to air shedding. They are additive. We are just assuming the 25 psf which is conservative.
Center of Pressure: Assume located at the mid-height $H = 88.32/2 = 44 \text{ ft}$	Note: If the diameter of the column were small enough, such as a flag pole, the phenomenon of vortex shedding could occur resulting in oscillations that could lead to metal fatigue.
Overturning Moment: $38,200 \times 44 = 1,681,000 \text{ lb-ft}$	The wind is pushing to overturn the column

March 13, 2017 International Masonry Institute - Hawaii 14

Tragans Column

Column Weight $3.14 \times (6^2 - 5.17^2) \times 88.3 \times 150 = 385,600 \text{ lbs}$	The resisting moment comes from gravity. $\pi [R_1^2 - R_2^2] \times H \times 165$
Resisting Moment: $385,600 \times 6 = 2,313,000 \text{ lb-ft}$	Assume the weight acts at the center of the circular cross section. If it was a odd cross section, the center of mass would need to be calculated using the first moment of inertia.
$2,313,000 - 1,681,000 = 632,000 \text{ lb-ft}$	Since the resisting moment exceeds the overturning moment, the column remains upright.

March 13, 2017 International Masonry Institute - Hawaii 15

Tragans Column

$PL/2M = Pd/M$ $2,313,000 / 1,681,000 = 1.4$	Overturning moment/Resisting moment = F.S
---	---

March 13, 2017

International Masonry Institute - Hawaii

16

Tragans Column

March 13, 2017

International Masonry Institute - Hawaii

17

Tragans Column

How much additional axial load is required to reach a F.S of 1.5?

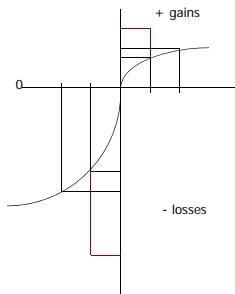

M/PL = 1/3.0
3 * 1,681,000 / 12 = 420,200 lbs
Dead load = 385,600 Lbs
Added = 420,000 - 385,600 = 34,400 lbs

1 No. 3 box

Use 8D load factor

438,000 - 2*285,600 = 72,000 lbs

212861



March 13, 2017

International Masonry Institute - Hawaii

18

Expected Utility Theory Vs Prospect Theory

- Instabilities around 0
- Gains and losses are not symmetrical
 - "Losses loom larger than gains"
- Estimates people tend to dislike losses about twice as much as they like equivalent gains

“Aggregate Losses; Segregate Gains”

March 13, 2017

International Masonry Institute - Hawaii

1

Contents:

1. The Theory [ASD and SD]
2. The Code [2012 IBC, ASCE 7-10 and TMS 402-11]
3. The Examples

March 13, 2017

International Masonry Institute - Hawaii

2

The Problem – Seismic Design of Walls

March 13, 2017

International Masonry Institute - Hawaii

3

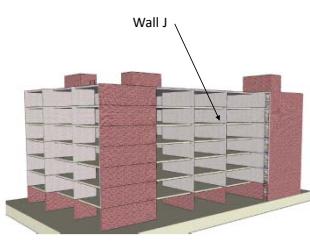
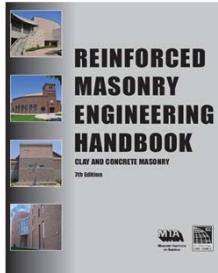
The Problem – Seismic Design of Walls

March 13, 2017

International Masonry Institute - Hawaii

4

The Problem – Seismic Design of Walls

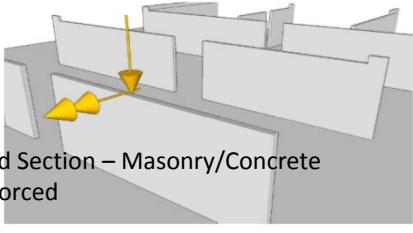



March 13, 2017

International Masonry Institute - Hawaii

6

The Problem – Seismic Design of Walls


March 13, 2017

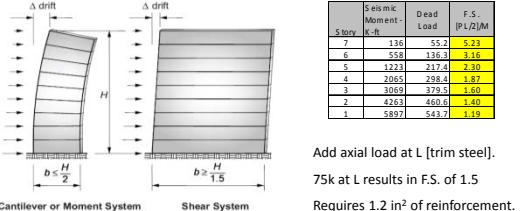
International Masonry Institute - Hawaii

6

The Problem – Seismic Design of Walls

Bending + Compression

March 13, 2017 International Masonry Institute - Hawaii 7



The Problem – Seismic Design of Walls

Story	Seismic Moment - K-B	Dead Load	F.S. [P(L/2)/M]
7	136	55.2	2.3
6	558	136.3	3.16
5	127	214.4	0.57
4	306	398.4	0.77
3	306	379.5	1.60
2	4263	460.6	1.40
1	5897	543.7	1.10

Add axial load at L [trim steel].
75k at L results in F.S. of 1.5.
Requires 1.2 in² of reinforcement.

March 13, 2017 International Masonry Institute - Hawaii 8

The Equations:

The Assumptions

The Variables and Solution for the Unknowns

The Limits

March 13, 2017 International Masonry Institute - Hawaii 9

The Equations -Assumptions:

Plane Sections Remain Plane [Special Case of an Isotropic Material]

Strains are Compatible

Stress and Strain are Related

March 13, 2017

International Masonry Institute - Hawaii

10

The Equations -Assumptions:

Hooks Law

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{yz} \\ \varepsilon_{zx} \\ \varepsilon_{xy} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{xy} \end{bmatrix}$$

March 13, 2017

International Masonry Institute - Hawaii

11

The Equations -Assumptions:

Hooks Law –Isotropic Material

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{yz} \\ \varepsilon_{zx} \\ \varepsilon_{xy} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -v & -v & 0 & 0 & 0 \\ -v & 1 & -v & 0 & 0 & 0 \\ -v & -v & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1+v & 0 & 0 \\ 0 & 0 & 0 & 0 & 1+v & 0 \\ 0 & 0 & 0 & 0 & 0 & 1+v \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{xy} \end{bmatrix}$$

March 13, 2017

International Masonry Institute - Hawaii

12

The Equations -Assumptions:

Plane Sections Remain Plane [Special Case of an Isotropic Material]

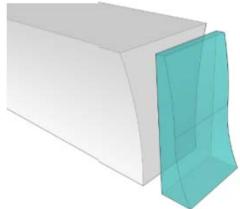
Hooks Law –Plane Sections Remain Plane

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{yz} \\ \varepsilon_{zx} \\ \varepsilon_{xy} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & & & & & \\ & 0 & 0 & 0 & 0 & \sigma_{xx} \\ & 0 & 0 & 0 & 0 & \sigma_{yy} \\ & 0 & 0 & 0 & 0 & \sigma_{zz} \\ & 0 & 0 & 0 & \sigma_{yz} & \sigma_{zx} \\ & 0 & 0 & 0 & \sigma_{xy} & \sigma_{xy} \end{bmatrix} \varepsilon_{xx} = \frac{1}{E} \sigma_{xx}$$

March 13, 2017

International Masonry Institute -
Hawaii

13



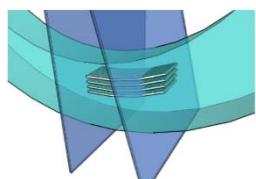
The Equations -Assumptions:

Hooks Law –Plane Sections do not Remain Plane

March 13, 2017

International Masonry Institute -
Hawaii

14



2.1 The Equations -Assumptions:

Hooks Law –Plane Sections Remain Plane

March 13, 2017

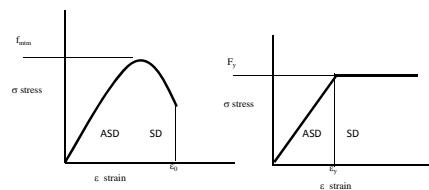
International Masonry Institute -
Hawaii

15

The Equations -Assumptions:

Strains are Compatible

The strain in the masonry/concrete equals the strain in the reinforcement.

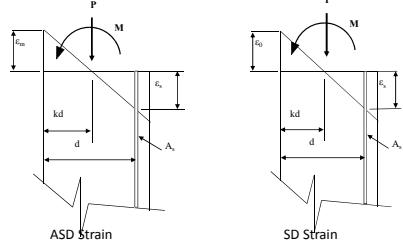

March 13, 2017

International Masonry Institute - Hawaii

16

The Equations -Assumptions:

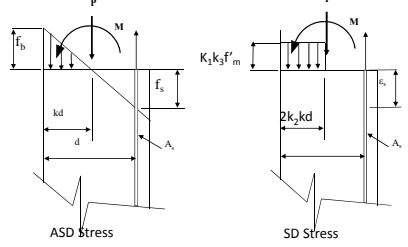
Stress and Strain are Related


March 13, 2017

International Masonry Institute - Hawaii

17

The Equations -Assumptions:


Stress and Strain are Related

March 13, 2017

International Masonry Institute - Hawaii

18

The Equations -Assumptions:**Stress and Strain are Related**

March 13, 2017

International Masonry Institute -
Hawaii

19

The Equations -Assumptions:**Stress and Strain are Related**

March 13, 2017

International Masonry Institute -
Hawaii

20

The Variables and Solution for the Unknowns**Knowns:****Guess and Check: A_s, L, b, d** **Loads: M, P and V** **Unknowns:****Stresses: k, f_b, f_s or $k, \epsilon_m, \epsilon_s$**

March 13, 2017

International Masonry Institute -
Hawaii

21

The Variables and Solution for the Unknowns**Equations:****Plane Sections Remain Plane** **$\Sigma F = 0$, Internal to external** **$\Sigma M = 0$, Internal to external**

March 13, 2017

International Masonry Institute -
Hawaii

22

The Variables and Solution for the Unknowns**Equations:****Plane Sections Remain Plane**

$$\frac{\varepsilon_m}{\varepsilon_s} = \frac{k}{1-k}$$

March 13, 2017

International Masonry Institute -
Hawaii

23

The Variables and Solution for the Unknowns**Equations:****Limits: The Steel Strain is 0**

$k = 1.0$

$k = 1.0$

$$\frac{M}{Pd} = \left(\frac{2}{3} - \Delta \right)$$

$$\frac{M}{Pd} = [1 - k_2 - \Delta]$$

March 13, 2017

International Masonry Institute -
Hawaii

24

The Variables and Solution for the Unknowns

Equations:

$$\Sigma F = 0, \text{ Internal to external}$$

$$\varepsilon_{mo} = \frac{P}{E_m bd}$$

$$n = \frac{E_s}{E_m} \quad \rho = \frac{A_s}{bd}$$

$$k^2 + \left(2np + 2 \frac{\varepsilon_{mo}}{E_s} \right) k - \left(2np + 2 \frac{\varepsilon_{mo}}{E_s} \right) = 0$$

$$k = \frac{\left(A_s F_y + P \right)}{2k_2 k_1 k_3 bdf_m'}$$

Add a limit: Steel yielding

$$\varepsilon_s E_s = F_y$$

March 13, 2017

International Masonry Institute - Hawaii

28

The Variables and Solution for the Unknowns

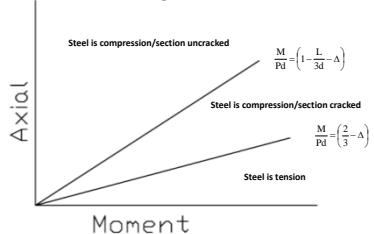
Equations:

$\Sigma M = 0$, Internal to external

$$E_s \epsilon_s A_s d \left(1 - \frac{k}{3}\right) = M - P \left(d - \frac{kd}{3} - \Delta d\right)$$

$$\frac{\epsilon_{ult}}{\epsilon_s} = \frac{np \left(1 - \frac{k}{3}\right)}{\left(\frac{M}{Pd} - \left(1 - \frac{k}{3} - \Delta\right)\right)}$$

$$M = A_s F_y \left(1 - \frac{2k_2 k}{2}\right) d + P \left(1 - \frac{2k_2 k}{2} - \Delta\right) d$$

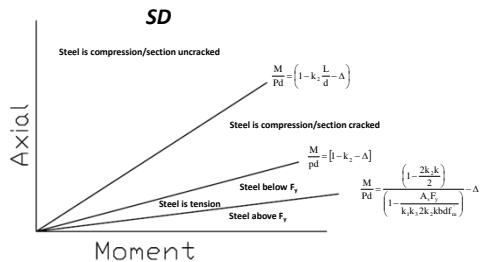

March 13, 2017

International Masonry Institute - Hawaii

29

The Variables and Solution for the Unknowns

ASP

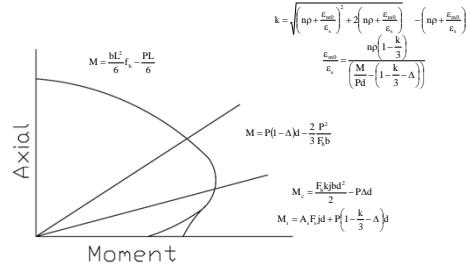


March 13, 2017

International Masonry Institute - Hawaii

30

The Variables and Solution for the Unknowns

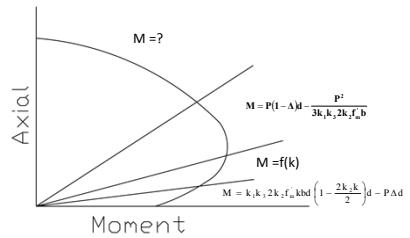


March 13, 2017

International Masonry Institute -
Hawaii

31

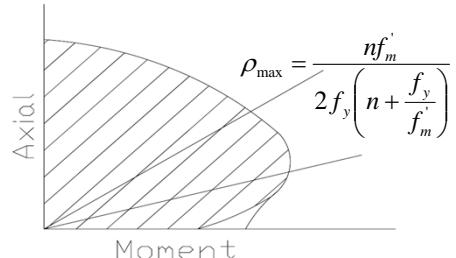
The Variables and Solution for the Unknowns



March 13, 2017

International Masonry Institute -
Hawaii

32


2.2 The Variables and Solution for the Unknowns

March 13, 2017

International Masonry Institute -
Hawaii

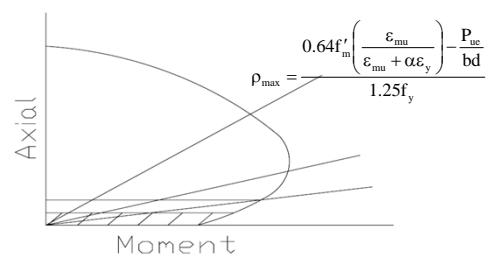
33

Ductility Requirements and the Codes**Axial Load is the same as reinforcement****Masonry ASD**

March 13, 2017

International Masonry Institute -
Hawaii

34

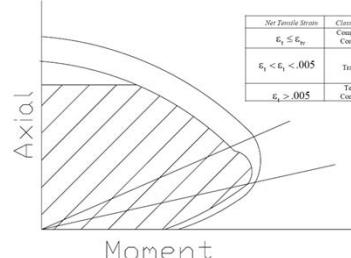


Ductility Requirements and the Codes**Axial Load is the same as reinforcement****Masonry ASD**

March 13, 2017

International Masonry Institute -
Hawaii

35



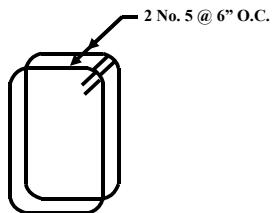
Ductility Requirements and the Codes**Axial Load is the same as reinforcement****Concrete**

Net Tensile Strain $\epsilon_t \leq \epsilon_y$	Classification Compression Controlled	Φ 65
$\epsilon_t < \epsilon_t < .005$	Tension Controlled	$\Phi = 65 + 2 \cdot \frac{(\epsilon_t - \epsilon_y)}{(0.005 - \epsilon_y)}$
$\epsilon_t > .005$	Tension Controlled	90

March 13, 2017

International Masonry Institute -
Hawaii

36

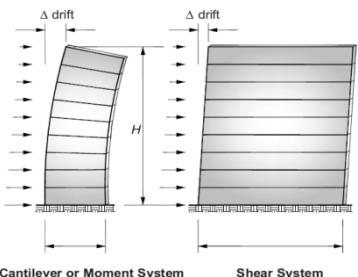


What is wrong with this detail?

March 13, 2017

International Masonry Institute -
Hawaii

37

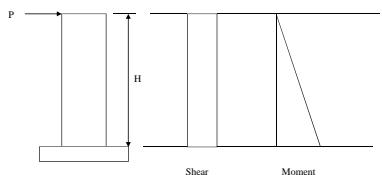


One More Thing – Distribution of Loads

March 13, 2017

International Masonry Institute -
Hawaii

38

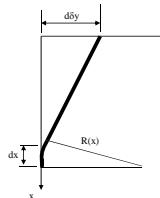


Distribution of Loads

March 13, 2017

International Masonry Institute -
Hawaii

39

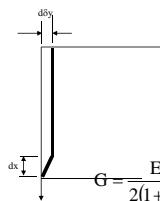


Distribution of Loads - Flexure

$$\frac{dx}{R(x)} = \frac{d\delta_y}{x} \quad \text{or} \quad d\delta_y = \frac{x dx}{R(x)}$$

$$\frac{1}{R(x)} = \frac{\varepsilon(x)}{y} \quad \varepsilon = \varepsilon_0 \frac{x}{H}$$

$$d\delta_y = \frac{\varepsilon_0}{yH} x^2 dx$$


$$= \frac{PH \frac{L}{2}}{\frac{E}{L} \frac{I^2}{12} \frac{H^3}{L^3}} \frac{dPH}{dL} \quad \delta_y = \frac{6PH^2}{ETI^2} \frac{H^2}{\frac{L}{2}} - \frac{P}{ET} \left[\left(\frac{H}{L} \right)^3 \right]$$

March 13, 2017

International Masonry Institute - Hawaii

40

Distribution of Loads - Shear

$$\frac{dy}{dx} = \frac{P}{GTL}$$

$$G = \frac{E}{2(1+v)}$$

$$v = .3$$

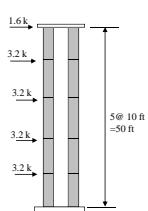
$$y = \frac{P}{GTL} \int dx = \frac{PH}{GTL}$$

March 13, 2017

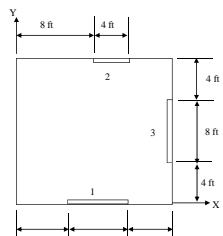
International Masonry Institute - Hawaii

41

Distribution of Loads – Flexure Plus Shear


$$\delta_y = \frac{P}{ET} \left[4 \left(\frac{H}{L} \right)^3 + 2.6 \frac{H}{L} \right]$$

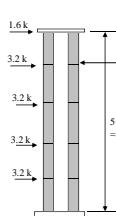
March 13, 2017


International Masonry Institute - Hawaii

42

Distribution of Loads – Example

Hose Tower – Wind Load



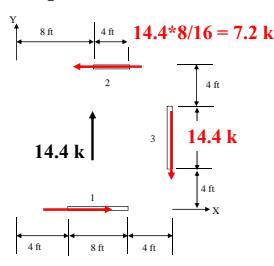
March 13, 2017

International Masonry Institute - Hawaii

43

Distribution of Loads – Example

The diagram shows a beam with a horizontal length of 8 ft. A vertical force of 14.4 k is applied downwards at the left end. A horizontal force of 14.4 k is applied downwards at the right end. The beam is supported by a vertical member at the right end, which is 4 ft from the base. The beam is labeled with a red double-headed arrow between the two supports, indicating a 2 ft gap.


March 13, 2017

International Masonry Institute - Hawaii

44

Distribution of Loads – Example

Center of Rigidity		
	X	Y
Roof	15.99	1.80
4th	15.99	1.82
3rd	15.99	1.84
2nd	15.99	1.92
1st	15.99	2.27

March 13, 2017

International Masonry Institute - Hawaii

48

Contents:

1. The Theory [ASD and SD]
2. The Code [2012 IBC, ASCE 7 –10 and TMS 402-11]
3. The Examples

March 13, 2017

International Masonry Institute -
Hawaii

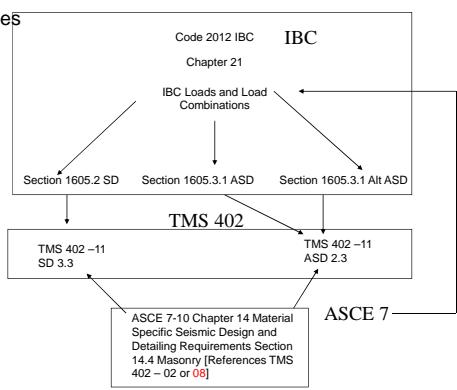
1

Codes

March 13, 2017

International Masonry Institute -
Hawaii

2



Codes

March 13, 2017

International Masonry Institute -
Hawaii

3

Codes

ASCE 7 -10 Section C2.4.1

Exception 3 given for special reinforced masonry walls, is based upon the combination of three factors that yield a conservative design for overturning resistance under the seismic load combination:

1. The basic allowable stress for reinforcing steel is 40% of the specified yield.
2. The minimum reinforcement required in the vertical direction provides a protection against the circumstance where the dead and seismic loads result in a very small demand for tension reinforcement.
3. The maximum reinforcement limit prevents compression failure under overturning.

Of these, the low allowable stress in the reinforcing steel is the most significant. This exception should be deleted when and if the standard for design of masonry structures substantially increases the allowable stress in tension reinforcement.

March 13, 2017

International Masonry Institute -
Hawaii

7

Codes

1605.3.2 Alternative basic load combinations. In lieu of the basic load combinations specified in Section 1605.3.1, structures and portions thereof shall be permitted to be designed for the most critical effects resulting from the following combinations. When using these alternative basic load combinations that include wind or seismic loads, allowances for these shall be permitted to be increased or decreased as required by the provisions of this section.

$$\begin{aligned}
 D + L + (L_r \text{ or } S \text{ or } R) & \quad (\text{Equation 16-17}) \\
 D + L + 0.6 \circ W & \quad (\text{Equation 16-18}) \\
 D + L + 0.6 \circ W + S/2 & \quad (\text{Equation 16-19}) \\
 D + L + S + 0.6 \circ W/2 & \quad (\text{Equation 16-20}) \\
 D + L + S + E/1.4 & \quad (\text{Equation 16-21}) \\
 0.9D + E/1.4 & \quad (\text{Equation 16-22})
 \end{aligned}$$

March 13, 2017

International Masonry Institute -
Hawaii

8

Codes – ASCE 7

2.1 GENERAL [ASCE 7 2005]

Buildings and other structures shall be designed using the provisions of either Section 2.3 [*SD*] or 2.4 [*ASD*]. Either Section 2.3 or 2.4 shall be used exclusively for proportioning elements of a particular construction material throughout the structure.

2.1 GENERAL [ASCE 7-2010]

Buildings and other structures shall be designed using the provisions of either Section 2.3 [SD] or 2.4 [ASD]. Where elements of a structure are designed by a particular material standard or specification, they shall be designed exclusively by either Section 2.3 or 2.4.

March 13, 2017

International Masonry Institute -
Hawaii

9

Codes – ASCE 7

2012 IBC

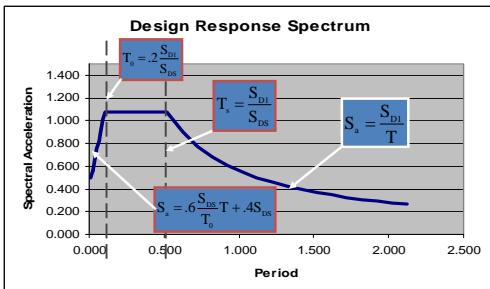
~~2.1 GENERAL [ASCE 7 2005]~~

~~Buildings and other structures shall be designed using the provisions of either Section 2.3 [SD] or 2.4 [ASD]. Either Section 2.3 or 2.4 shall be used exclusively for proportioning elements of a particular construction material throughout the structure.~~

2.1 GENERAL [ASCE 7-2010]

~~Buildings and other structures shall be designed using the provisions of either Section 2.3 [SD] or 2.4 [ASD]. Where elements of a structure are designed by a particular material standard or specification, they shall be designed exclusively by either Section 2.3 or 2.4.~~

2.3.0
March 13, 2017


International Masonry Institute -
Hawaii

10

Ground Motion

Response Spectrum

12

Ground Motion Soil

$$S_{MS} = F_a S_s$$

$$S_{M1} = F_v S_1$$

13

Ground Motion Soil

Short Duration Site Modification (Fa)					
	Ss				
Soil	0.25	0.5	0.75	1	>1.25
A	0.8	0.8	0.85	0.8	0.8
B	1	1	1	1	1
C	1.2	1.2	1.1	1	1
D	1.6	1.4	1.2	1.1	1
E	2.5	1.7	1.2	0.9	0.9
F	Note b				

14

Ground Motion Soil

One Second Duration Site Modification (Fv)					
	S1				
	0.1	0.2	0.3	0.4	>.5
A	0.8	0.8	0.8	0.8	0.8
B	1	1	1	1	1
C	1.7	1.6	1.5	1.4	1.3
D	2.4	2	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F	Note b				

15

Ground Motion Soil

$$S_{MS} = F_a S_s$$

$$S_{M1} = F_v S_1$$

16

Seismic Design Category Occupancy

Select Seismic Use Group

III	Fire, Hospital, Emergency, control towers
II	300 people, education, jails, power stations, water treatment plant, medical facilities
I	Not I and II

Seismic Importance Factor

III	1.5
II	1.25
I	1

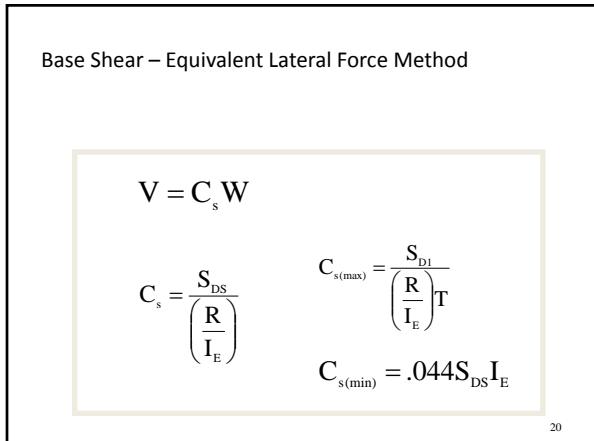
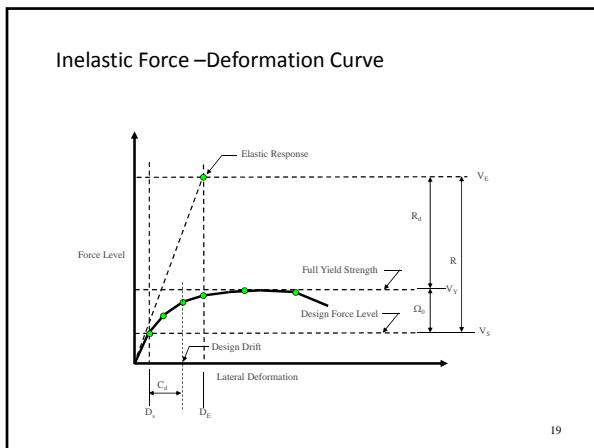
17

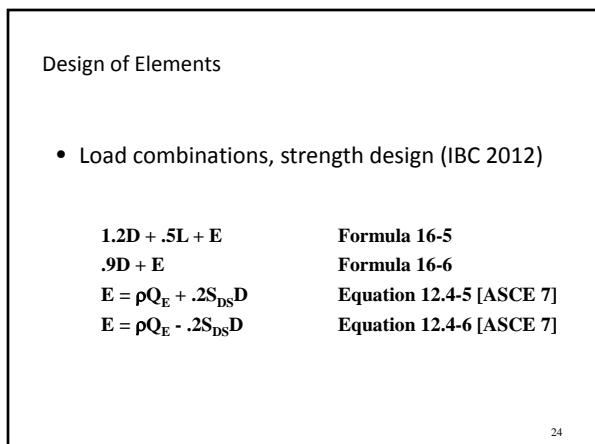
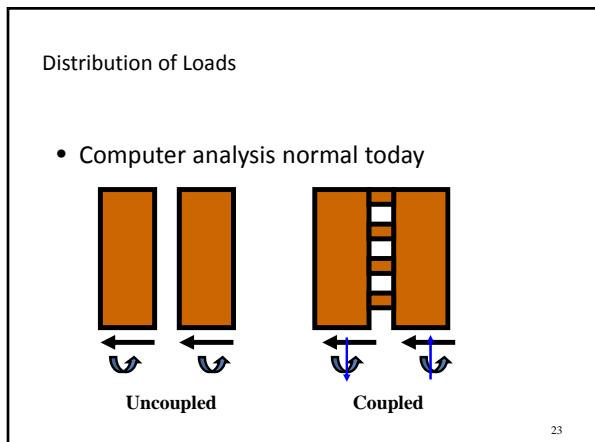
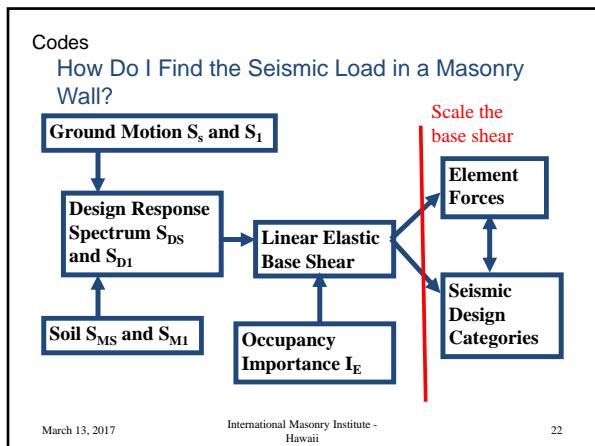
Seismic Design Category

Design Category based Sds			
Sds	I	II	III
0.167	A	A	A
0.33	B	B	C
0.5	C	C	D
>.5	D	D	D

Design Category based on Sd1			
Sd1	I	II	III
0.067	A	A	A
0.133	B	B	C
0.2	C	C	D
>.2	D	D	D

18

Design of Elements

- Load combinations, allowable stress design (IBC 2012)

$$\mathbf{D} + \mathbf{L} + \mathbf{S} + .7*\mathbf{E}$$

Formula 16-10

$$.6D + .7*E$$

Formula 16-12

$$\mathbf{E} = \rho \mathbf{Q}_E + .2 \mathbf{S}_{DS} \mathbf{D}$$

Equation 12.4-5 [ASCE 7]

$$E = \rho Q_E - .2 S_{DS} D$$

Equation 12.4-6 [ASCE 7]

25

Design of Elements

- Load combinations, alternative allowable stress design (IBC 2012)

$$\mathbf{D} + \mathbf{L} + \mathbf{S} + \mathbf{E}/1.4$$

Formula 16-17

.9D + E/1.4

Formula 16-18

$$\mathbf{E} = \rho \mathbf{Q}_F + .2 \mathbf{S}_{DS} \mathbf{D}$$

Equation 12.4-5 [ASCE 7]

$$E = \rho Q_E - .2 S_{DS} D$$

Equation 12.4-6 [ASCE 7]

26

Codes

	Operational	Immediate Occupancy	Life Safety	Near Collapse
Frequent Earthquakes (50% in 50 years)			Performance for group I buildings	
Design Earthquake (2/3 of MCE)		Performance for group II buildings		
Maximum Considered Earthquake (2% in 50 years)		Performance for group III buildings		

March 13, 2017

International Masonry Institute - Hawaii

27

Codes

	Operational Level	Immediate Occupancy Level	Life Safety Level	Collapse Prevention Level
Overall Damage	Very Light	Light	Moderate	Severe
Personnel Safety	No injuries	Minor injuries	Minor injuries	Major injuries or deaths
Structural Frame	Minor or no damage to the structural frame. Since repair is not required, operations are not interrupted.	Minor repairable damage to structural frame. Does not interfere with immediate use, but may interfere with long-term use.	Structural frame is permanently damaged and may not be repairable.	Structural frame is near collapse
Cladding	Little or no cladding damage. Operations not interrupted for repair.	Minor cladding damage. Does not interfere with immediate operations, but may require future repair or replacement.	Damage to cladding but cladding remains on the building. Cladding may have to be replaced.	Extensive loss of cladding
Windows	No window damage	Minor or no window damage	A few windows may be broken	Extensive broken windows
Doors	No jamming of doors.	Some doors jammed. Requires immediate repair.	Some doors jammed. No exits blocked.	Extensive jamming of doors and blocking of exits
Walls	Little or no damage to walls. Operations not interrupted for repair.	Minor damage of walls. Requires repair in the future	Extensive damage of walls, many not repairable.	Extensive damage of walls, many not repairable.

March 13, 2017

International Masonry Institute - Hawaii

28

Codes

	Operational Level	Immediate Occupancy Level	Life Safety Level	Collapse Prevention Level
Mechanical and Electrical Systems	No damage to mechanical and electrical systems. Operations continue uninterrupted. Power and utilities are available from auxiliary sources.	Minor damage of mechanical and electrical systems. Repairable in 24 hours or less if repair services are available. Power and utilities may be unavailable.	Moderate damage of mechanical and electrical systems. May not be repairable.	Extensive damage of mechanical and electrical systems, not repairable.
Elevators	Elevators functional.	Moderate damage of elevators. May not be functional for several days, if repair services are available.	Extensive damage of elevators, may be repairable.	Extensive damage of elevators, not repairable
Computers and Data Storage	Fully functional. No loss of data.	Minor damage, requiring repairs. Data may be lost. Down time depends on availability of repair services.	Extensive damage, may be repairable.	Extensive damage, not repairable
Sensitive Equipment	No damage to sensitive equipment.	Moderate damage, requiring repairs. Experiments lost. Down time depends on availability of parts and repair services.	Extensive damage, not repairable	Extensive damage, not repairable.

March 13, 2017

International Masonry Institute - Hawaii

29

Codes

2016 and beyond editions will be produced solely by TMS. As such, we'll use TMS 402/602

ACI
(ACI 530-13)
(ACI 530.1-13)

Lead sponsor
TMS
(TMS 402-13)
(TMS 602-13)

2011 "MSJC"
Code and Specification

ASCE
(ASCE 5-13)
(ASCE 6-13)

March 13, 2017

International Masonry Institute - Hawaii

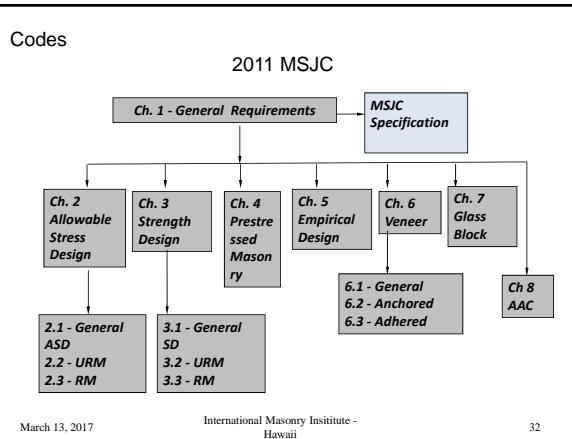
30

Codes

Code and Specification

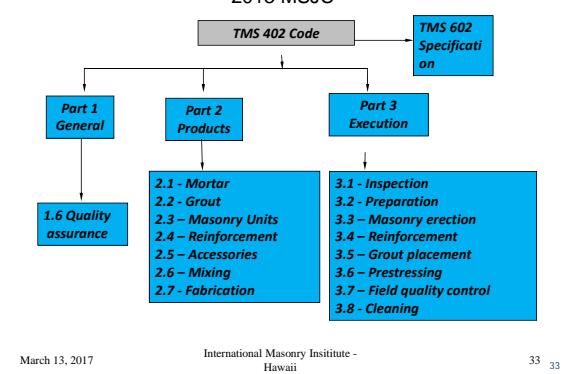
TMS 402 “Code”

- Design provisions
- QA program in accordance with the Specification
- Section 1.4 invokes the Specification by reference.


TMS 602 “Specification”

- Verify compliance with specified f'_m
- Comply with specified products and execution
- Comply with required level of quality assurance

March 13, 2017


International Masonry Institute -
Hawaii

31

Codes

2013 MSJC

Codes – TMS 602 – 13 specification

Table 2 – Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction

Net area compressive strength of concrete masonry, psi (MPa)	Net area compressive strength of concrete masonry units, psi (MPa)	
	Type M or S mortar	Type N mortar
1,700 (11.72)	---	1,900 (13.10)
1,900 (13.10)	1,900 (13.10)	2,350 (14.82)
2,000 (13.79)	2,000 (13.79)	2,650 (18.27)
2,250 (15.51)	2,600 (17.95)	3,400 (23.44)
2,500 (17.24)	3,250 (22.41)	4,350 (28.96)
2,750 (18.96)	3,900 (26.89)	----
3,000 (20.69)	4,500 (31.05)	----

¹For units of less than 4 in. (102 mm) nominal height, use 85 percent of the values listed.

Revised values for compressive strength of masonry Concrete masonry units of 2000 psi in type M or S mortar have a compressive strength of 2000 psi

March 13, 2017

International Masonry Institute - Hawaii

34

Codes – TMS 602 – 13 specification

Starting with the 2008 MSJC code/specification, self-consolidating grout is permitted

- SCG penetrates voids and surrounds reinforcement without requiring mechanical vibration for consolidation.

March 13, 2017

International Masonry Institute - Hawaii

35

Codes – and the Structural Engineers Negligence

	No Failure	Failure
Satisfies the Code	Not Negligent	Negligent
Does not Satisfy the Code	Negligent	Negligent

March 13, 2017

International Masonry Institute - Hawaii

36