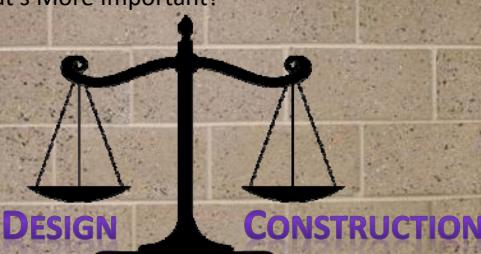


MIH MASONRY INSTITUTE OF HAWAII presents

MASONRY DETAILING AND CONSTRUCTION

John Chrysler, PE, FTMS
Masonry Institute of America
November 5, 2014


Masonry Detailing and Construction

Gentlemen, these plans might be confusing, so this simple graph on the wall should explain everything

Masonry Detailing and Construction

- What's More Important?

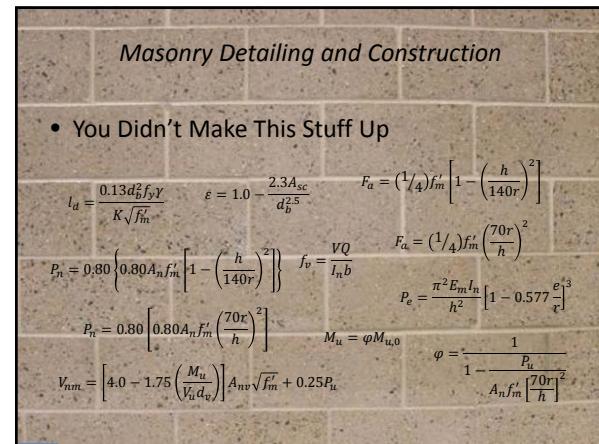
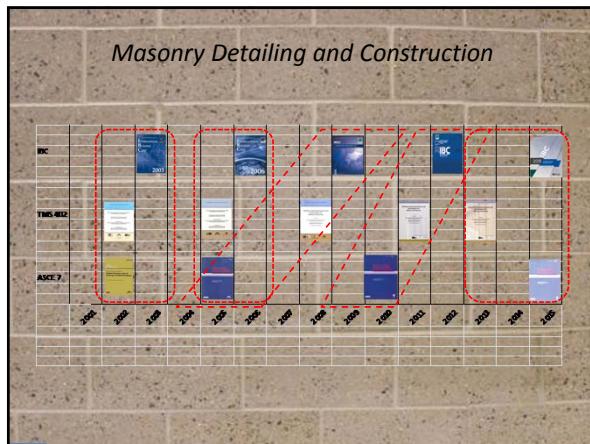
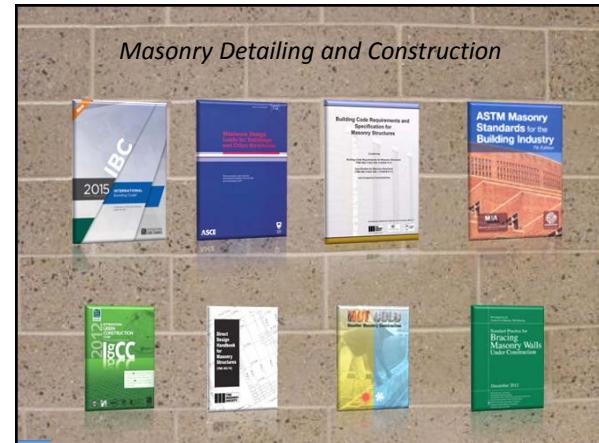
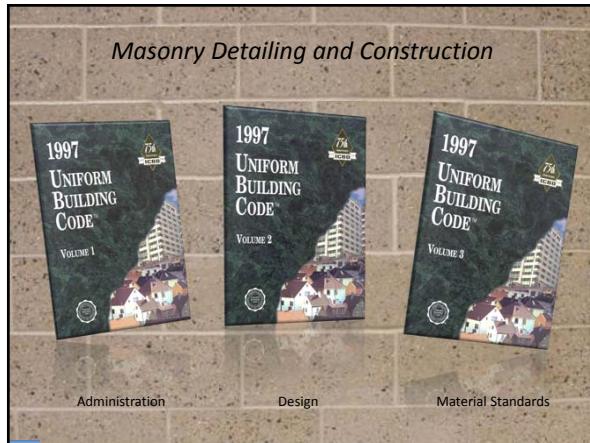
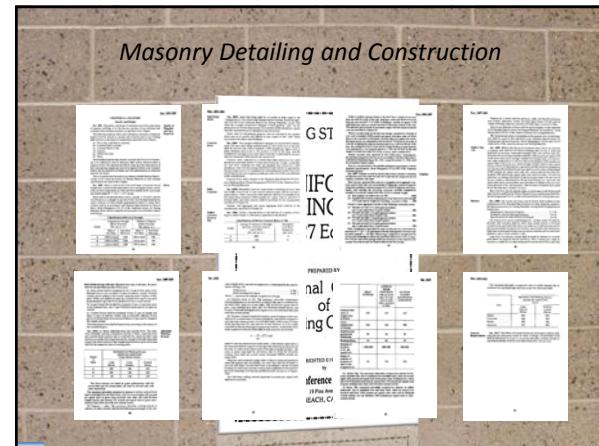
Masonry Detailing and Construction

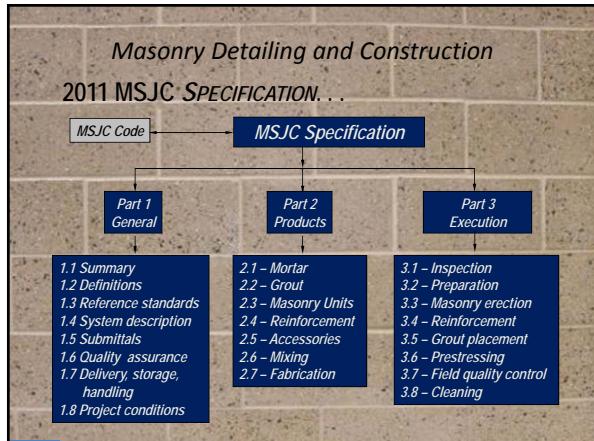
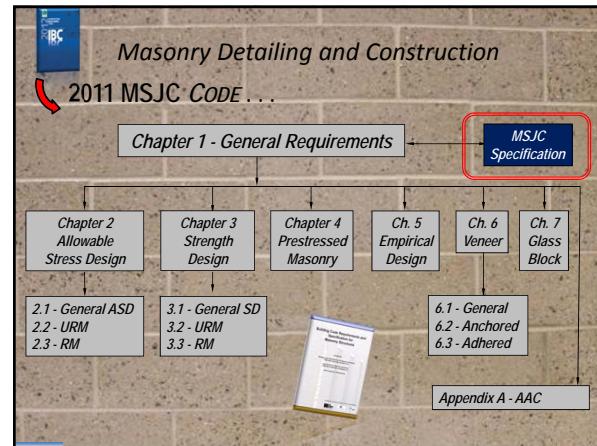
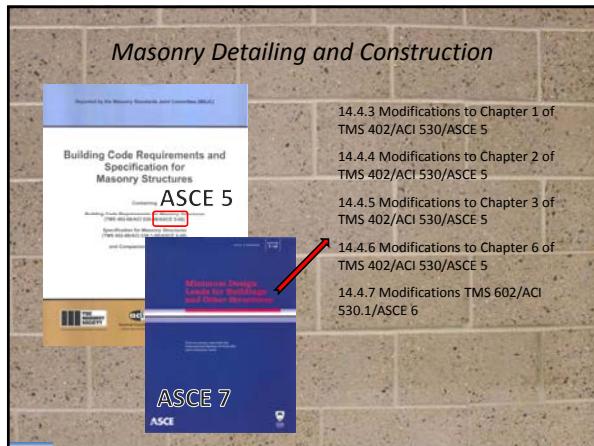
WHY???

- Designer Doesn't Understand Contractor Complaints
- Contractors Don't Understand the Design
- Codes Getting More Complicated
- Other Field Personnel (Inspectors, Suppliers) Caught in the Middle

WHAT HAPPENED TO COMMON SENSE?

Masonry Detailing and Construction






Outline




- Background-The Complicated Part
- The Players—Communication
- Vision to Reality
- Design Issues
- The Right Specification
- Moving Forward

Masonry Detailing and Construction

Outline-Design Issues

- Design Communication Issues
- What Needs to be in the Masonry Wall
 - Structural Integrity and Other Stuff
- Congestion
- Reinforcement and Splices
- Grouting
- When Things Go South
- Finding Help—Industry Resources

Masonry Detailing and Construction

- I Can Design It.

Masonry Detailing and Construction

- Can You Build It?

Masonry Detailing and Construction

- I Can Design It.

Masonry Detailing and Construction

- Can You Build It?

UNDERSTAND THE DESIGN

A MESSAGE TO THE CONTRACTOR

Masonry Detailing and Construction

- How about the 'plastic hinge zone'?

ASCE 7 Section 14.4, Masonry Detailing Requirements

Lap splices shall not be used in plastic hinge zones of special reinforced masonry shear walls. The length of the plastic hinge zone shall be taken as at least 0.15 times the distance between the point of zero moment to the point of maximum moment.

- Applies to Special Reinforced Masonry Shear Walls
- SDC D-Participating Element

Masonry Detailing and Construction

- How about the 'plastic hinge zone'?

Masonry Detailing and Construction

- How about the 'plastic hinge zone'?

- TMS 402-11, Sec 1.18.4.4.2 → Sec. 1.18.3.2.6
- ASCE 7-10 Modification Sec. 18.4.4.2.2

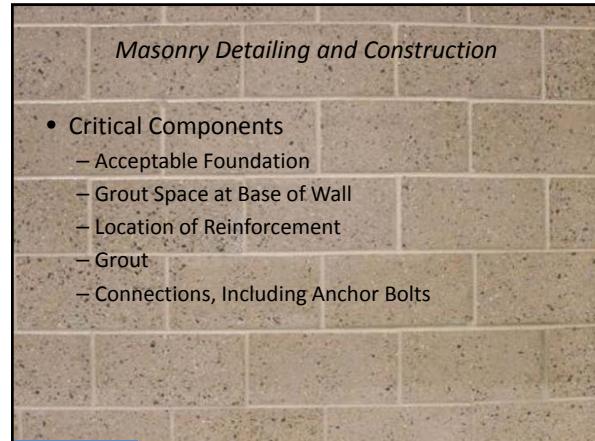
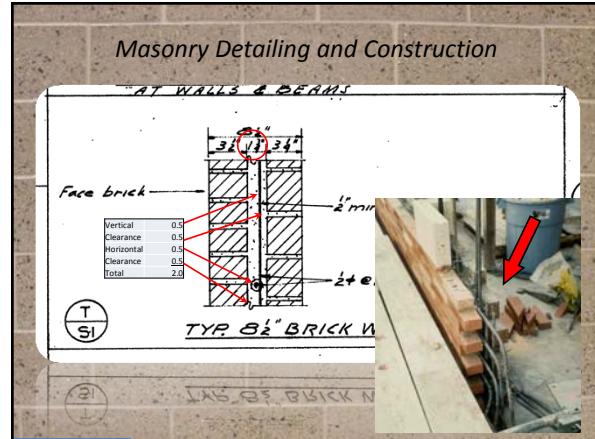
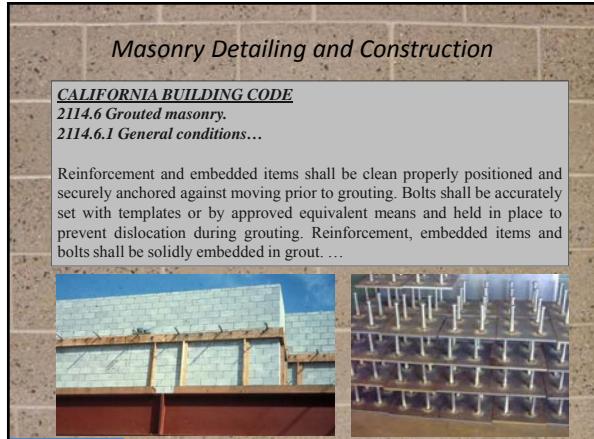
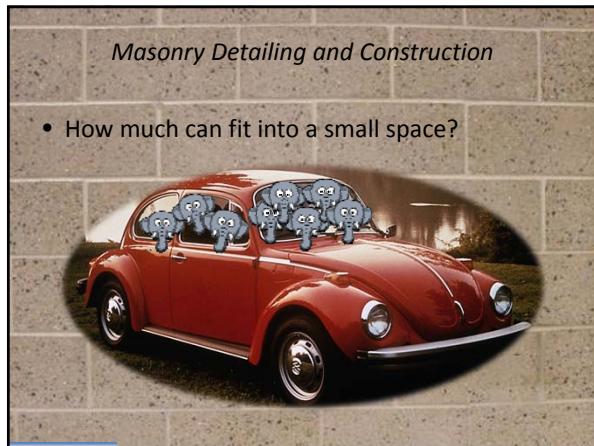
Masonry Detailing and Construction

- Maximum Design Moment

Masonry Detailing and Construction

- Maximum Design Moment

Masonry Detailing and Construction





- RFI from Masonry Contractor to SE

Requirement For Block Strength of 3,750 PSI. Which is Classified Ultra High Strength by CMU Manufacturer, whom has Supplied CMU for A Dozen or so CVS's This Year and This Would Be the First One Using U.H.S. Masonry Units . I think The Question is Worth asking Because the Block Production time will be reduced with normal strength Units . The reason is that Once the Block is Manufactured they must cure and reach design strength before they Leave CMU Manufacturer and Obviously the Curing time is reduced with Normal strength Units. We may need to Consult an Engineer as the overall Masonry assembly Design Strength is Stated At F'M = 2,500 PSI. (Page S-0.1 masonry note # 4) Request Reduction to Typical F'M = 1,500 PSI.

Really Happened!

UNDERSTAND THE CONSTRUCTION

A MESSAGE TO THE DESIGNER

Masonry Detailing and Construction

Critical Components

- What's really important?

Preparation of Foundation

First Course Layout

Masonry Detailing and Construction

Critical Components

- What's really important?

Reinforcement Placement

Grouting

DESIGN ISSUES

INSIDE THE WALL

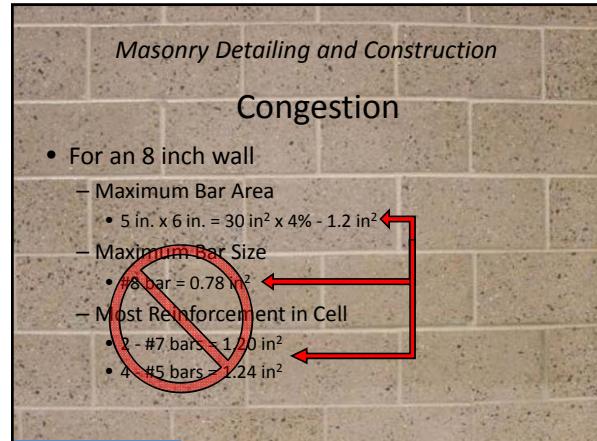
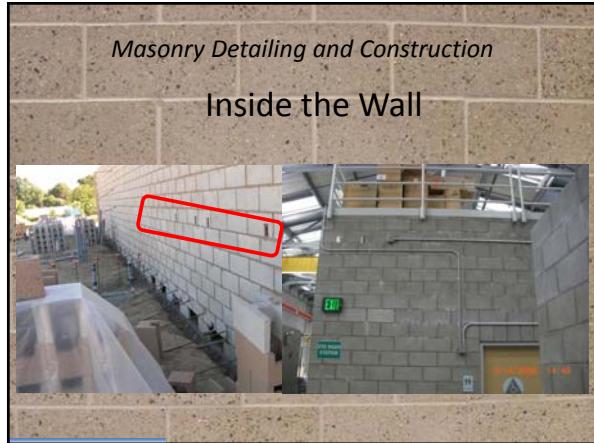
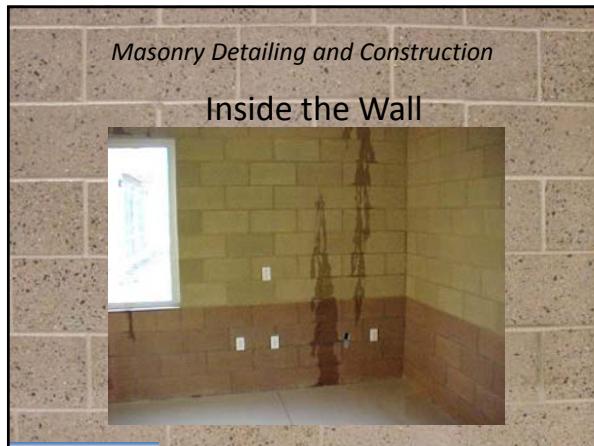
Masonry Detailing and Construction

Inside the Wall

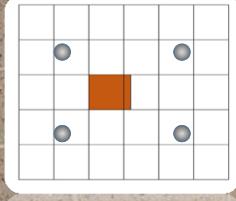
- What's Inside the Masonry Wall?
 - Reinforcement
 - Grout
- But Don't Forget
 - Electrical
 - Plumbing
 - Penetrations (HVAC)
 - Embeds

Masonry Detailing and Construction

Inside the Wall

Masonry Detailing and Construction

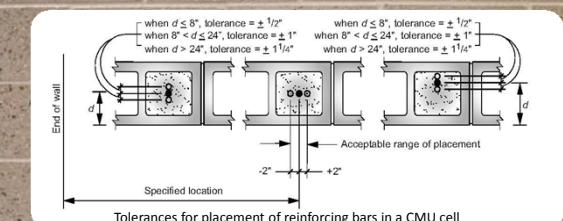

Masonry Detailing and Construction

- What the Code (TMS 402-11) Says:

CODE	COMMENTARY
3.3.3 Reinforcement requirements and details 3.3.3.1 Reinforcing bar size limitations — Reinforcing bars used in masonry shall not be larger than No. 9 (M#29). The nominal bar diameter shall not exceed one-eighth of the nominal member thickness , and shall not exceed one-quarter of the least clear dimension of the cell, course, or collar joint in which the bar is placed. The area of reinforcing bars placed in a cell or in a course of hollow unit construction shall not exceed 4 percent of the cell area.	3.3.3 Reinforcement requirements and details 3.3.3.1 Reinforcing bar size limitations — The limit of using a No. 9 (M#29) bar is motivated by the goal of having a larger number of smaller diameter bars to transfer stresses rather than a fewer number of larger diameter bars. Some research investigations have concluded that in certain applications masonry reinforced with more uniformly distributed smaller diameter bars performs better than similarly configured masonry elements using fewer larger diameter bars. While not...

Masonry Detailing and Construction

Congestion



DESIGN ISSUES

REINFORCEMENT AND SPLICES

Masonry Detailing and Construction

Reinforcement

- Location

Masonry Detailing and Construction

Reinforcement

Masonry Detailing and Construction

Reinforcement

- Congestion

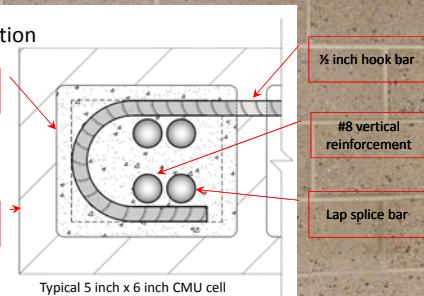
Masonry Detailing and Construction

Reinforcement

- Congestion

Masonry Detailing and Construction

Reinforcement


- TMS 402, Section 3.3.3 Reinforcement requirements and details

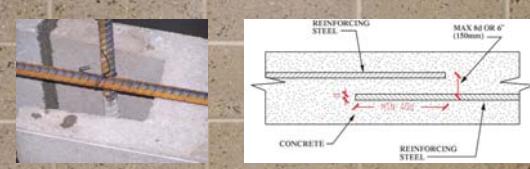
3.3.3.3.2.1 Except at wall intersections, the end of a horizontal reinforcing bar needed to satisfy shear strength requirements of Section 3.3.4.1.2 shall be bent around the edge vertical reinforcing bar with a 180-degree hook. The ends of single-leg or U-stirrups shall be anchored by one of the following means:....

Masonry Detailing and Construction

Reinforcement

- Congestion

Masonry Detailing and Construction


Lap Splices

- How Long Should a Lap Splice Be?
- $l_d = 0.002d_b f_s$ (UBC ASD)
- $l_d = l_{de}/\phi$, $l_{de} = \frac{0.15d_b^2 f_y}{K \sqrt{f_m}} \leq 52d_b$ (UBC SD)
- $l_d = \frac{0.13d_b^2 f_y \gamma}{K \sqrt{f_m}}$ (TMS 402-08 ASD Override)
- $l_d = \frac{0.13d_b^2 f_y \gamma}{K \sqrt{f_m}}$, but $\gamma = 1.0 - \frac{2.3A_c}{d_b^{2.5}}$ where $\frac{2.3A_c}{d_b^{2.5}} \leq 1.0$ (TMS 402-11 ASD Override)

Masonry Detailing and Construction

Lap Splices

- How Much Contact is Required for a Lap Splice to be Effective?

Masonry Detailing and Construction

Lap Splices

- How Much Contact is Required for a Lap Splice to be Effective?

Reinforced Concrete Design, K Leet (1991)...Although bars joined by a lap splice are usually wired together with their sides in direct contact, forces can also be transferred effectively between bars whose transverse spacing does not exceed one-fifth of the lap length l_s or 6 in (152 mm), whichever is smaller.

ACI 318-11 Building Code Requirements for Structural Concrete (2011) - 12.4.2.3 Bars spliced by noncontact lap splices in flexural members shall not be spaced transversely farther apart than the smaller of one-fifth the required lap splice length, and 6 in.

Masonry Detailing and Construction

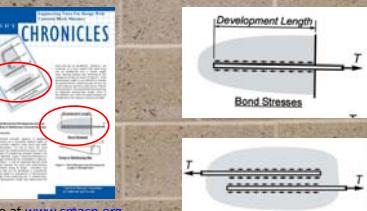
Lap Splices

- How Much Contact is Required for a Lap Splice to be Effective?

TMS 402-11 Building Code Requirements for Masonry Structures (2011) – Sections 2.1.7.7.1.3 and 3.3.3.3.1 Bars spliced by noncontact lap splices shall not be spaced transversely farther apart than one-fifth the required length of lap nor more than 8 in. (203 mm).

TMS 602-11 Specification for Masonry Structures (2011) – Article 3.4 B.9 Noncontact lap splices – Position bars spliced by noncontact lap splices no farther apart transversely than one-fifth the specified length of lap nor more than 8 in. (203 mm).

Masonry Detailing and Construction


Lap Splices

- How Much Contact is Required for a Lap Splice to be Effective?

TMS 402-11 Building Code Requirements for Masonry Structures (2011) – Sections 2.1.7.7.1.3 and 3.3.3.3.1 Bars spliced by noncontact lap splices shall not be spaced transversely farther apart than one-fifth the required length of lap nor more than 8 in. (203 mm).

TMS 602-11 Specification for Masonry Structures (2011) – Article 3.4 B.9 Noncontact lap splices – Position bars spliced by noncontact lap splices no farther apart transversely than one-fifth the specified length of lap nor more than 8 in. (203 mm).

Masonry Chronicles Available at www.cmacn.org

Masonry Detailing and Construction

Lap Splices

- How Much Contact is Required for a Lap Splice to be Effective?

TMS 602-08 Specification for Masonry Structures (2008) – Article 3.4 B.1 Support and fasten reinforcement together to prevent displacement beyond the tolerances allowed by construction loads or by placement of grout or mortar.

TMS 602-11 Specification for Masonry Structures (2011) – Article 3.4 B.1 Support reinforcement to prevent displacement caused by construction loads or by placement of grout or mortar, beyond the allowable tolerances.

Masonry Detailing and Construction

Lap Splices

- How Much Contact is Required for a Lap Splice to be Effective?

TMS 602-08 Specification for Masonry Structures (2008) – Article 3.4 B.1 Support and fasten reinforcement together to prevent displacement beyond the tolerances allowed by construction loads or by placement of grout or mortar.

TMS 602-11 Specification for Masonry Structures (2011) – Article 3.4 B.1 Support reinforcement to prevent displacement caused by construction loads or by placement of grout or mortar, beyond the allowable tolerances.

Masonry Detailing and Construction

Lap Splices

- Keep it simple and consistent
- Class of splice (ACI 318) NOT Required
- Try to Limit Congestion
- Tying Splices is Not a Code Requirement
- Consider Staggering Splices for Highest Seismic Applications

CRITICAL COMPONENTS

ANCHOR BOLTS

Masonry Detailing and Construction

Anchor Bolts

- A Real Dilemma
 - Anchor Bolts Should Be Embedded as Deep as Possible for Maximum Efficiency
 - There Isn't Much Room Inside the Cell

3.4 D. Anchor bolts...

3. For anchor bolts placed through the face shell of a hollow masonry unit... maintain a clear distance between the bolt and the face of masonry unit and between the head or bent leg of the bolt and the formed surface of grout of at least $\frac{1}{4}$ in. (6.4 mm) when using fine grout and at least $\frac{1}{2}$ in. (12.7 mm) when using coarse grout.

Masonry Detailing and Construction

Anchor Bolts

- A Real Dilemma

Figure SC-14 — Anchor bolt clearance requirements for headed anchor bolts — bent-bars are similar

Masonry Detailing and Construction

Masonry Detailing and Construction

NOTES:

1. MINIMUM BOLT SPACING SHALL BE 16 BOLT DIAMETERS WITH A MINIMUM EDGE DISTANCE OF 12 DIAMETERS, UNLESS NOTED OTHERWISE.
2. PROVIDE AN ADDITIONAL 2" OF EMBEDMENT FOR ANCHOR BOLTS LOCATED IN THE TOP OF COLUMNS.
3. ANCHOR BOLTS SHALL BE HEX HEADED WITH THE DIMENSIONS OF THE HEX CONFORMING TO ANSI/ASME B18.2.1 BENT BAR ANCHORS SHALL NOT BE USED.
4. PARTIALLY CORE CMU FACE SHELLS AS REQUIRED TO ATTAIN PROPER ANCHOR BOLT EMBEDMENT.

Masonry Detailing and Construction

2013 CBC Section 2114.10 Bent bar anchor bolts shall not be allowed.

DESIGN ISSUES

GROUTING

Masonry Detailing and Construction

Grouting

- Cells should be reasonably clean

Unacceptable Cells

Ready for Grouting

Masonry Detailing and Construction

Grouting

- Placement of Grout

Placement of Grout

Placement of Grout

Masonry Detailing and Construction

Grouting

- Placement of Grout

Placement of Grout

Placement of Grout

Masonry Detailing and Construction

Grouting

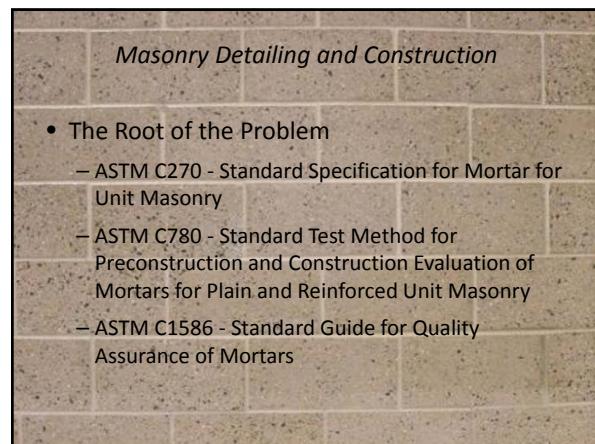
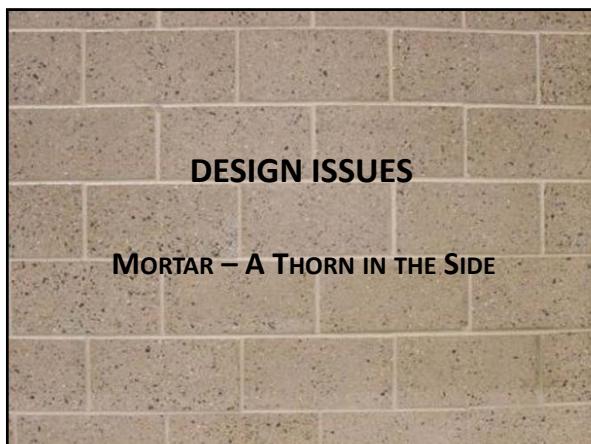
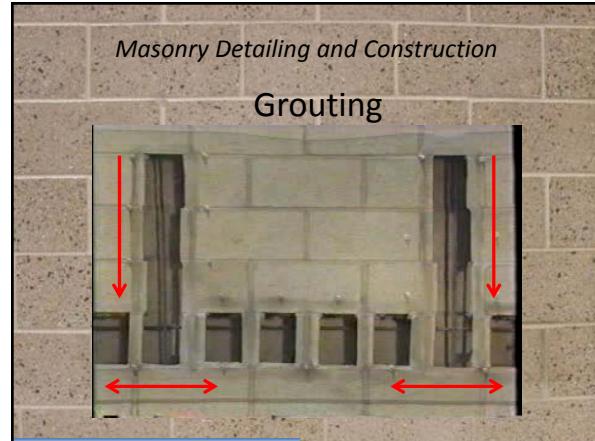
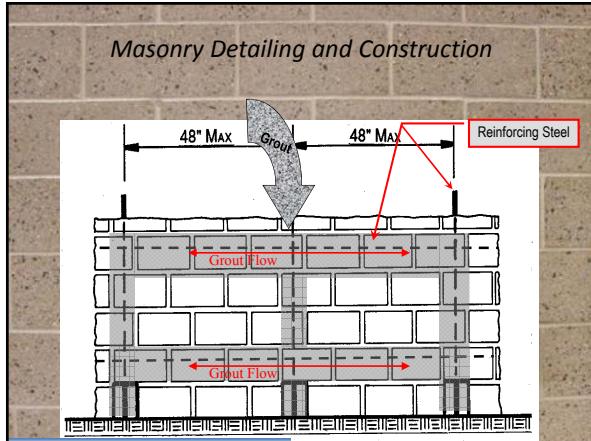
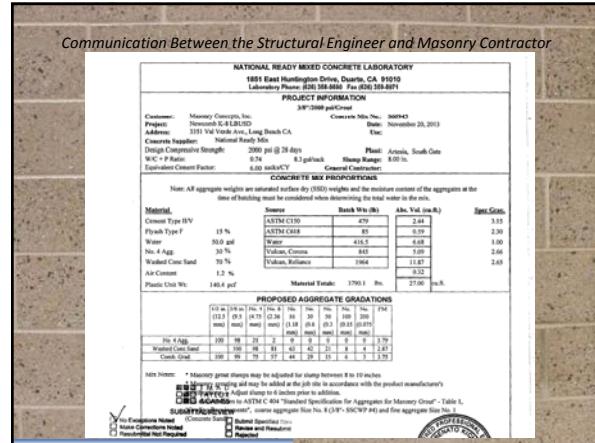
- Consolidation and Reconsolidation

Consolidation and Reconsolidation

Consolidation and Reconsolidation

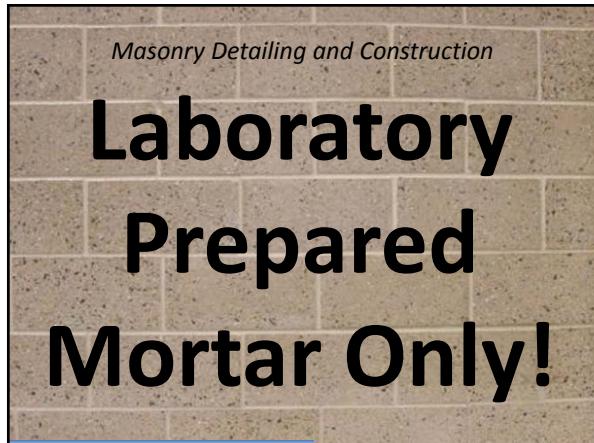
Communication Between the Structural Engineer and Masonry Contractor

- Masonry Grout is like Concrete, but.....
 - A lot of water is NOT a bad thing (up to 11" slump)
 - Aggregates must be smaller

Masonry Grout is like Concrete, but....

Masonry Grout is like Concrete, but....


Communication Between the Structural Engineer and Masonry Contractor

- Masonry Grout is like Concrete, but.....
 - A lot of water is NOT a bad thing (up to 11" slump)
 - Aggregates must be smaller
 - Not Too Much Cement
 - Fly Ash and Slag are Good (Longer Strength Gain)
 - No Plasticizers as Water Replacement
 - Masonry Grout has a unique ASTM Standard

Masonry Detailing and Construction											
• The Root of the Problem – ASTM C270											
ASTM C 270 TABLE 1- PROPORTION SPECIFICATION REQUIREMENTS											
MORTAR	TYPE	PROPORTIONS BY VOLUME (cementitious materials)						AGGREGATE MEASURED IN A DAMP, LOOSE CONDITION	S4	12	14
		Portland cement or blended Cement	Masonry cement	Mortar cement	Hydrated Lime OR Lime Putty	M	S				
Cement-Lime	M	1	-	-	-	-	-	-	-	75	12
	S	1	-	-	-	-	-	-	-	75	12
	N	1	-	-	-	-	-	-	-	75	14
	O	1	-	-	-	-	-	-	-	75	14
Mortar cement	M	1	-	-	-	-	1	-	-	75	12
	M	1	-	-	-	-	1	-	-	75	12
	S	½	-	-	-	-	1	-	-	75	14
	S	-	-	-	-	-	1	-	-	75	14
	N	-	-	-	-	-	1	-	-	75	14
	O	-	-	-	-	-	1	-	-	75	14

Masonry Detailing and Construction											
• The Root of the Problem – ASTM C270											
ASTM C270, TABLE 2, PROPERTY SPECIFICATION REQUIREMENT ^{S4}											
Mortar	Type	Avg. Compressive Strength at 28 Days, min psi	Water Retention, Min. %	Air Content, Max %	Aggregate Ratio						
Cement-Lime	M	2500 (17.2)	75	12	Not less than 2½ and not more than 3½ times the sum of the separate volumes of cementitious materials						
	S	1800 (12.4)	75	12							
	N	750 (5.2)	75	14							
	O	350 (2.4)	75	14							
Mortar Cement	M	2500 (17.2)	75	12	Not less than 2½ and not more than 3½ times the sum of the separate volumes of cementitious materials						
	S	1800 (12.4)	75	12							
	N	750 (5.2)	75	14							
	O	350 (2.4)	75	14							
	M	2500 (17.2)	75	18							
Masonry Cement	S	1800 (12.4)	75	18							
	N	750 (5.2)	75	20							
	O	350 (2.4)	75	20							

Masonry Detailing and Construction											
• The Root of the Problem – ASTM C270											
ASTM C270, TABLE 2, PROPERTY SPECIFICATION REQUIREMENTS ⁴											
Mortar	Type	Avg. Compressive Strength at 28 Days, min psi	Water Retention, Min. %	Air Content, Max %	Aggregate Ratio						
Cement-Lime	M	2500 (17.2)	75	12	Not less than 2½ and not more than 3½ times the sum of the separate volumes of cementitious materials						
	S	1800 (12.4)	75	12							
	N	750 (5.2)	75	14							
	O	350 (2.4)	75	14							
Mortar Cement	M	2500 (17.2)	75	12	Not less than 2½ and not more than 3½ times the sum of the separate volumes of cementitious materials						
	S	1800 (12.4)	75	12							
	N	750 (5.2)	75	14							
	O	350 (2.4)	75	14							
	M	2500 (17.2)	75	18							
Masonry Cement	S	1800 (12.4)	75	18							
	N	750 (5.2)	75	20							
	O	350 (2.4)	75	20							

Masonry Detailing and Construction											
• The Root of the Problem – ASTM C270											
1.2 The proportion or property specifications shall govern as specified.											
1.3 When neither proportion or property specifications are specified, the proportion specifications shall govern...											
3.1 Specification C270 is not a specification to determine mortar strengths through field testing.											
3.3 The compressive strength values resulting from field tested mortars do not represent the compressive strength of mortar as tested in the laboratory nor that of the mortar in the wall.											

Masonry Detailing and Construction											
• The Root of the Problem – ASTM C780											
1.4 The test results obtained under this test method are not required to meet the minimum compressive values in accordance with the property specifications in Specification C270.											
5.2.6 ...Mortar compressive strength test values are not representative of the actual compressive strength of mortar in the assembly and are not appropriate for use in predicting the compressive strength that would be attained by the mortar in the masonry assembly.											
A6.1.1 ...Strength values for mortars obtained through these testing procedures are not required, nor expected, to meet strength requirements of laboratory Specification C270 mortars.											

Masonry Detailing and Construction

- **The Root of the Problem – ASTM C1586**

4.1 Use Specification C270 to specify masonry mortar by either the Proportion or Property Specifications of that standard, but not both. If neither the Proportion nor Property specification is given, Specification C270 the Proportion specification to be used.

4.2 **Proportion Specifications**—These Specifications direct the mason to produce the masonry mortar using designated volumetric proportions of cementitious materials and aggregate as set forth in Table 1, Proportion Specifications, of Specification C270 for the Type of mortar specified. This procedure of specifying mortar requires no sampling and testing of mortar, and hence, no measurement of mortar properties in the laboratory or the field is required. All that is necessary is field confirmation of the proper proportions of the mixes used in construction.

Masonry Detailing and Construction

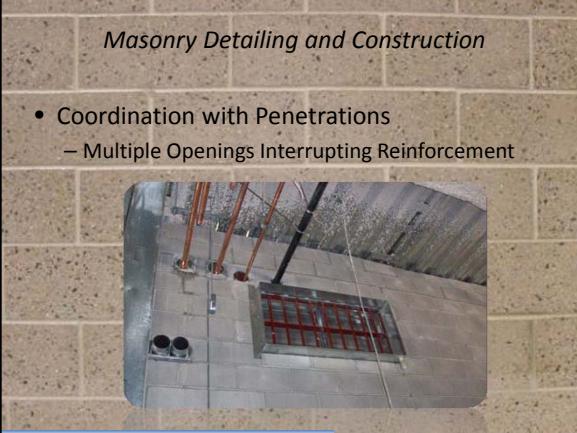
- **The Root of the Problem – ASTM C1586**

4.3.2 Do not use the Specification C270 Property Specifications requirements to evaluate construction site-produced mortars. Due to the higher amount of water necessary for actual masonry construction, mortar produced and sampled in the field will typically have lower compressive strength than that produced in the laboratory per Specification C270.

5.5.3 Measurement of construction site masonry mortar compressive strength using Test Method C780, Annex A7, is not the appropriate test method to determine the compliance of the mortar with the compressive strength requirements of Specification C270; however it may have some value in the determination of mortar uniformity.

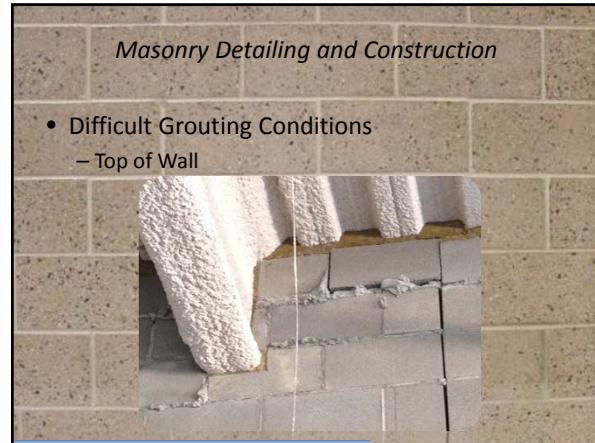
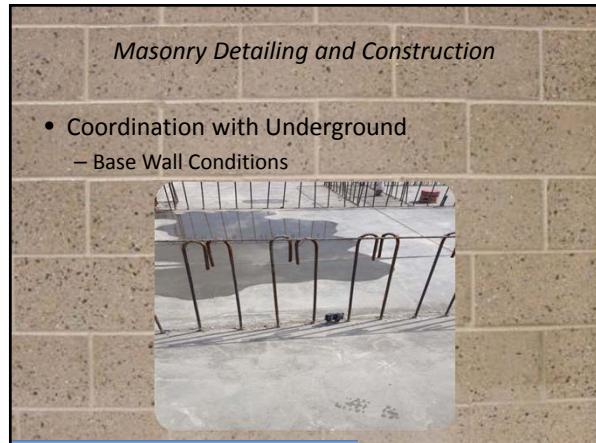
THE BAD STUFF

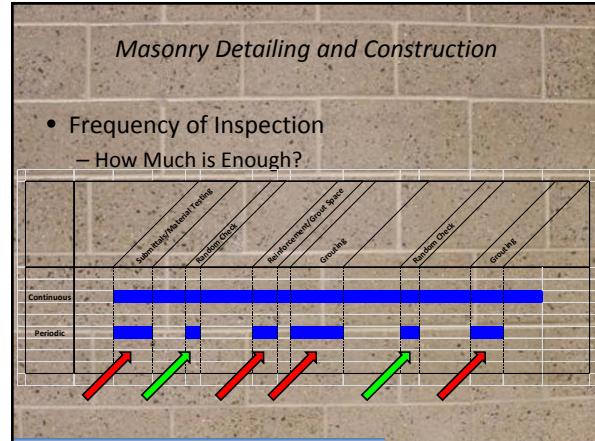
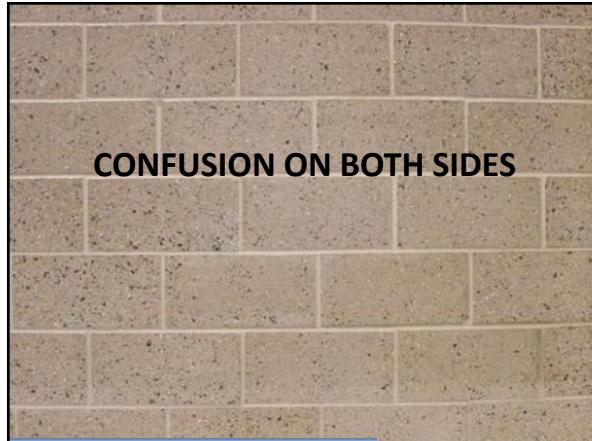
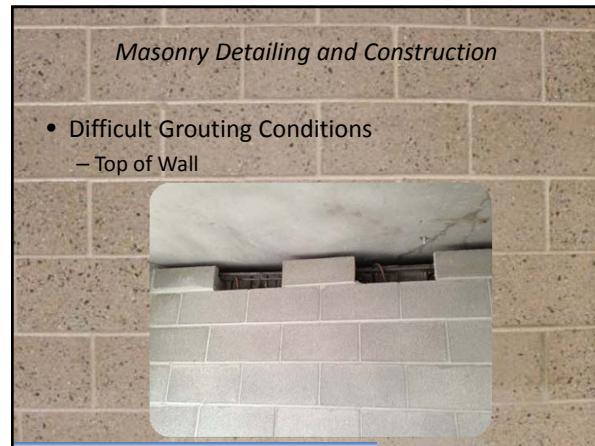
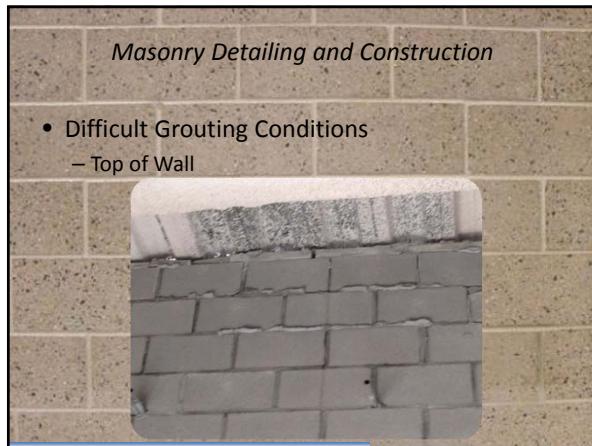
When Things Go South


Masonry Detailing and Construction

- **Coordination with Penetrations**
 - Multiple Openings Interrupting Reinforcement

Masonry Detailing and Construction



- **Coordination with Penetrations**
 - Multiple Openings Interrupting Reinforcement

Masonry Detailing and Construction

- **Coordination with Penetrations**
 - Multiple Openings Interrupting Reinforcement

Masonry Detailing and Construction

Periodic Inspection—How Much?

- (2012 IBC) Code Definition

SPECIAL INSPECTION. Inspection of construction requiring the expertise of an *approved special inspector* in order to ensure compliance with this code and the *approved construction documents*.

Continuous special inspection. Special inspection by the *special inspector* who is present when and where the work to be inspected is being performed.

Periodic special inspection. Special inspection by the *special inspector* who is intermittently present where the work to be inspected has been or is being performed.

Not much help

Masonry Detailing and Construction

Periodic Inspection—How Much?

- Need to Quantify 'Periodic' – TMS 602 Commentary

3.1 — Quality Assurance program

...The level of required quality assurance depends on whether the masonry was designed in accordance with Part 3, Appendix B, or Appendix C (engineered) or in accordance with Part 4 or Appendix A (empirical or prescriptive).

NEW 2016

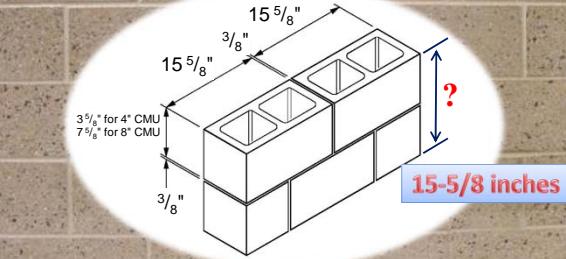
Quality Assurance Tables 3.1.2 and 3.1.3 require inspection tasks to be performed on a continuous or periodic basis. The Architect/Engineer should define the required timing of periodic inspections so that they are sufficient to verify a representative sample of the materials and workmanship. The frequency of periodic inspection varies depending on the size and complexity of the project.

Masonry Detailing and Construction

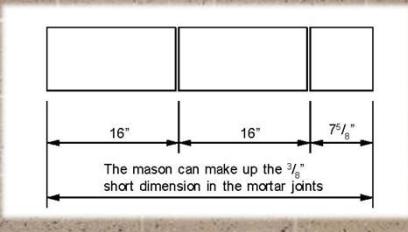
Bad Test Reports? – Don't Panic

- Case where prisms were capped out-of-tolerance

Masonry Detailing and Construction

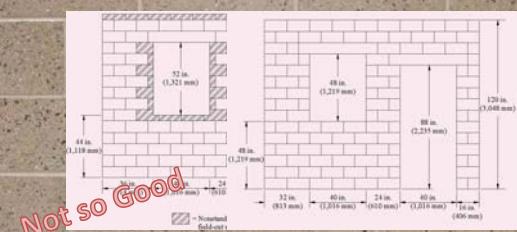

Bad Test Reports? – Don't Panic

- Testing procedure done incorrectly



Masonry Detailing and Construction

- Masonry Dimensioning


Masonry Detailing and Construction

- Masonry Dimensioning

Masonry Detailing and Construction

- Masonry Dimensioning

Masonry Detailing and Construction

- Masonry Dimensioning

Masonry Detailing and Construction

- Masonry Dimensioning
 - Reinforcing Steel Must be Spaced in 8 inch increments
 - Vertically and Horizontally
 - Any wall dimension is possible, but...
 - Things look best when designed in 8 inch modules
 - You can hide stuff (electrical, plumbing) inside wall, but...
 - Be careful not to compromise the structural integrity
- When All is Said and Done
 - ASTM C90 says look at the wall from 20 feet away

FINDING HELP

Industry Resources

Masonry Detailing and Construction

- Industry Resources
 - NCMA TEK Notes
 - MasonrySystems.org
 - Google Sketchup
 - BIM-M
 - Local Resources

Masonry Detailing and Construction

- National Concrete Masonry Association
www.ncma.org
 - TEK Notes

National Concrete Masonry Association — Association Website.mhtml

Masonry Detailing and Construction

- www.MasonrySystems.org

MasonrySystems.org - Masonry wall systems, technical notes, masonry resources, project galleries and more.mhtml

single-wythe-reinforced-concrete-block.skp

Masonry Detailing and Construction

- BIM-M www.BIMforMasonry.org

 Building Information Modeling for Masonry (BIM-M)_org-.mht

 BIM-M Benefits.mht

Masonry Detailing and Construction

- Local Resources
 - Masonry Institute of Hawaii
www.masonryhawaii.com
 Masonry Institute of Hawaii.mht
 - Cement and Concrete Products Institute
www.ccpihawaii.org
 Cement & Concrete Products Industry of Hawaii - Non Profit I Honolulu.mht

Masonry Detailing and Construction

- Other Valuable Resources
 - Masonry Institute of America
www.masonryinstitute.org
 MasonryInstitute.org.mhtml
 - Concrete Masonry Association of CA and NV
www.cmacn.org
 Concrete Masonry Association of California and Nevada.mhtml

Masonry Detailing and Construction

- Reinforced Masonry Engineering Handbook
- Design of Reinforced Masonry Structures
- Masonry Designers Guide
- Direct Design Handbook

THE RIGHT SPECIFICATION

Masonry Detailing and Construction

- Common on Structural Notes
 - Specifying Mortar by Properties and Proportion
 - Listing Grades and Types for CMU
 - Confusion about f'_{m}
 - Not Understanding the Difference Between Grout Lift and Grout Pour
 - Conflicts Between Architectural Specifications and Structural Notes

Masonry Detailing and Construction

Masonry Detailing and Construction

Masonry Detailing and Construction

Masonry Detailing and Construction

Masonry Detailing and Construction

Masonry Detailing and Construction

The Right Specification

Masonry Detailing and Construction

The Right Specification

Structural Notes Said

f'_{m} shall be determined per IBC Section 2105.

Should Have Been

Verification of f'_{m} shall be determined per IBC Section 2105.

The term f'_{m} is a design strength, not an actual strength. The designer needs a verification that the actual masonry strength meets or exceeds the design strength to assure that the installed product is safe.

Masonry Detailing and Construction

The Right Specification

Structural Notes Said

The first course of block for block lifts exceeding 5'-0" shall have cleanouts consisting of double open-end bond beam block.

Should Have Been

When grout pours exceed 5'-0", the first course of block shall consist of inverted double open-end bond beam block. Provide cleanouts for access to every cell with vertical reinforcement.

Assumption: Solidly grouted masonry – The most important concept is to invert the bond beams on the first course to provide access for cleaning the cells and to maximize grout contact with foundation. Technicality-the note is referring to grout pours, not grout lifts.

Masonry Detailing and Construction

The Right Specification

Grout Lift or Grout Pour?

Low Lift Grouting High Lift Grouting

Masonry Detailing and Construction

The Right Specification

Structural Notes Said

A grout lift shall not be permitted to set prior to placement and consolidation of subsequent grout lift.

Should Have Been

When grout pours exceed 5'-0", a grout lift shall not be permitted to set prior to placement and consolidation of subsequent grout lift.

When grout pours do not exceed 5'-0" (low-lift grouting) the grout must set prior to the erection of additional masonry.

Masonry Detailing and Construction

The Right Specification

Structural Notes Said

Cleanouts at the bottom of all cells shall be used unless the lift is 4'-0" or less. Grout for each pour shall be stopped $1\frac{1}{2}$ " below the top of a block course except...

Should Have Been

Provide cleanouts for access to all cells when grout pours exceed 4'-0". Grout for each pour shall be stopped a minimum of $1\frac{1}{2}$ " below the top of a block course except...

Cleanouts relate to grout pours, not grout lifts. The grout key is intended to be a minimum dimension, not an exact dimension.

Masonry Detailing and Construction

The Right Specification

Structural Notes Said

Concrete masonry units (CMU) shall develop the following minimum 28 day prism compressive strengths in accordance with the building code.

MINIMUM 28 DAY COMPRESSIVE STRENGTHS			
Location	f'_{m}	Type S Mortar	Grout
All CMU UNO	1500 psi	1900 psi	2000 psi

Should Have Been (without table)

Verify compliance with the masonry design strength, f'_{m} , by the prism test method.

The code is clear that verification of the compressive strength is to be by the prism test method or the unit strength method, not both.

Masonry Detailing and Construction

What is the Strength of Masonry?

- Methods of Determination
 - Prism Test Method *OR*
 - Unit Strength Method
 - Testing Prisms from Constructed Masonry
- What About Mortar?
 - (Implication) Stronger is Not Better
 - Less Cement = Better Bond = Better Performance

Masonry Detailing and Construction

Prism Test Method Unit Strength Method

- CMU strength, 1,900 psi minimum
- Assume high strength unit = 3,750 psi
- Type S Mortar
- Grout = 3,750 psi
- CMU strength, 1,900 psi minimum
- Assume high strength unit = 3,750 psi
- Type S Mortar
- Grout = 3,750 psi

Will test between
3,200 and 3,500 psi

Table verifies 2,500 psi
(≈ 30% less)

Masonry Detailing and Construction

Moving Forward

- Masonry Unit Strength Table Recalibration (2013 TMS 402)
- Based on Unrecognized Strength of Masonry
- ASTM C90-Standard Specification for Loadbearing Concrete Masonry Units
 - C90-13 – Compressive Strength 1,900 psi
 - C90-14 – Compressive Strength 2,000 psi

Masonry Detailing and Construction

Moving Forward

ASTM C90-13, Table 2 Strength, Absorption and Density Classification Requirements

Density Classification	Oven-Dry Density of Concrete, lb/ft ³ (kg/m ³)	Maximum Water Absorption lb/ft ³ (kg/m ³)		Minimum Net Area Compressive Strength, lb/in ² (Mpa)	
	Average of 3 Units	Average of 3 Units	Individual Units	Average of 3 Units	Individual Units
Lightweight	Less than 105 (1680)	18 (288)	20 (320)	1900 (13.1)	1700 (11.7)
Medium Weight	105 to less than 125 (1680-2000)	15 (240)	17 (272)	1900 (13.1)	1700 (11.7)
Normal Weight	125 (2000) or more	13 (208)	15 (240)	1900 (13.1)	1700 (11.7)

Masonry Detailing and Construction

Moving Forward

ASTM C90-14, Table 2 Strength, Absorption and Density Classification Requirements

Density Classification	Oven-Dry Density of Concrete, lb/ft ³ (kg/m ³)	Maximum Water Absorption lb/ft ³ (kg/m ³)		Minimum Net Area Compressive Strength, lb/in ² (MPa)	
	Average of 3 Units	Average of 3 Units	Individual Units	Average of 3 Units	Individual Units
Lightweight	Less than 105 (1680)	18 (288)	20 (320)	2000 (13.8)	1800 (12.4)
Medium Weight	105 to less than 125 (1680-2000)	15 (240)	17 (272)	2000 (13.8)	1800 (12.4)
Normal Weight	125 (2000) or more	13 (208)	15 (240)	2000 (13.8)	1800 (12.4)

Masonry Detailing and Construction

Masonry Unit Strength Recalibration

- Verification of masonry compressive strength
 - Prism test method
 - Unit strength method
 - Testing prisms from constructed masonry
 - (Masonry prism test record—No longer available)
 - Uniform Building Code exclusive
 - At least 30 historic prisms required
 - Test record results required to be at least $1.33 f_m'$

Masonry Detailing and Construction

1973 Uniform Building Code

1973 UBC Table 24-J ASSUMED COMPRESSIVE STRENGTH IN BRICK MASONRY

COMPRESSIVE STRENGTH OF MASONRY UNITS, (psi)	ASSUMED COMPRESSIVE STRENGTH OF BRICK MASONRY, f_m' , psi		
	TYPE M MORTAR	TYPE S MORTAR	TYPE N MORTAR
Special Inspection Required→	Yes / No	Yes/No	Yes/No
14,000 plus	4600 / 2300	3900 / 1950	3200 / 1600
10,000	3400 / 1700	2900 / 1450	2400 / 1200
6,000	2200 / 1100	1900 / 950	1600 / 800
2,000	1000 / 500	900 / 450	800 / 400

Section 2404 (c).2.d.3 Assumed ultimate compressive strength
Hollow Concrete Units—Grade N..... f_m' = 1350 psi

Masonry Detailing and Construction

1988 Uniform Building Code (thru 1997)

1988 UBC Table 24-C SPECIFIED COMPRESSIVE STRENGTH OF MASONRY, f_m' , (psi) BASED ON SPECIFYING THE COMPRESSIVE STRENGTH OF MASONRY UNITS

Specified Strength of Clay Masonry Units (psi)	Specified Compressive Strength of Masonry, f_m'	
	Type M or S Mortar (psi)	Type N Mortar (psi)
14,000 or more	5,300	4,400
12,000	4,700	3,800
10,000	4,000	3,300
8,000	3,350	2,700
6,000	2,700	1,100
4,000	2,000	1,600

Specified Strength of Concrete Masonry Units (psi)	Specified Compressive Strength of Masonry, f_m'	
	Type M or S Mortar (psi)	Type N Mortar (psi)
4,800 or more	3,000	2,800
3,750	2,500	2,350
2,800	2,000	1,850
1,900	1,500	1,350
1,250	1,000	950

Masonry Detailing and Construction

2011 TMS 602, Specification for Masonry Structures

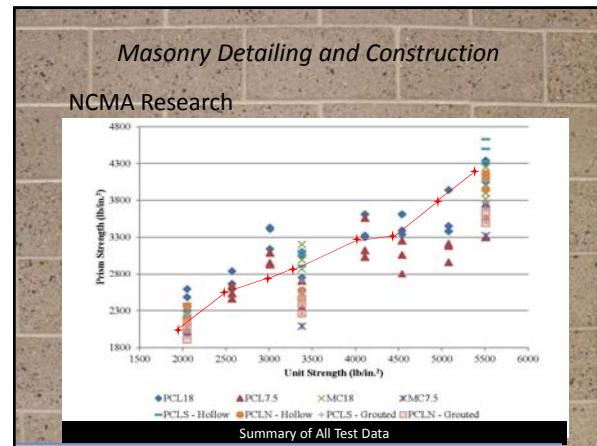
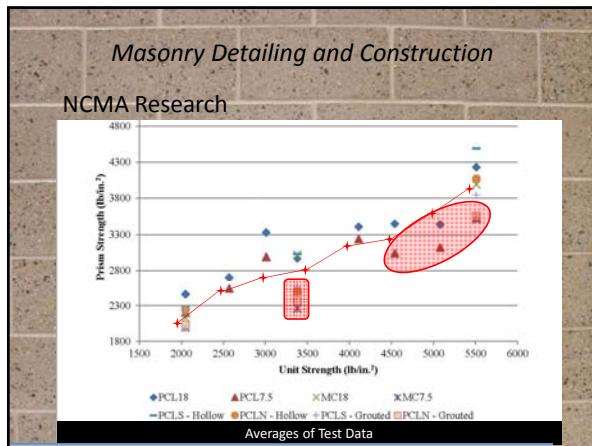
Table 2—Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction

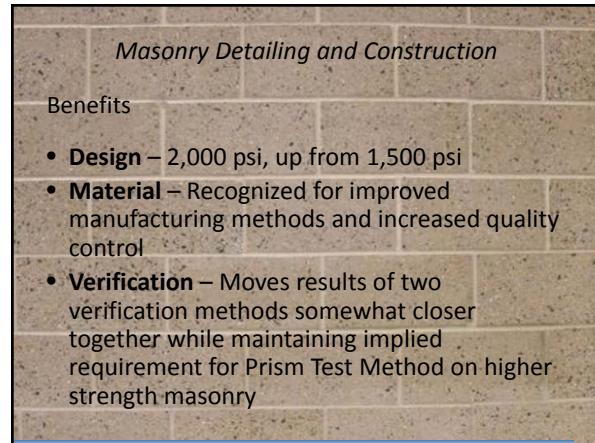
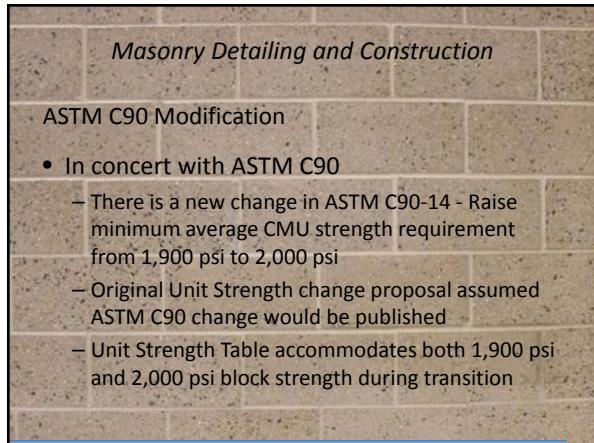
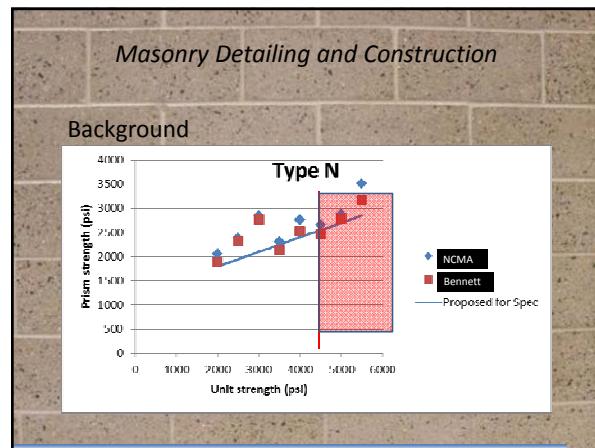
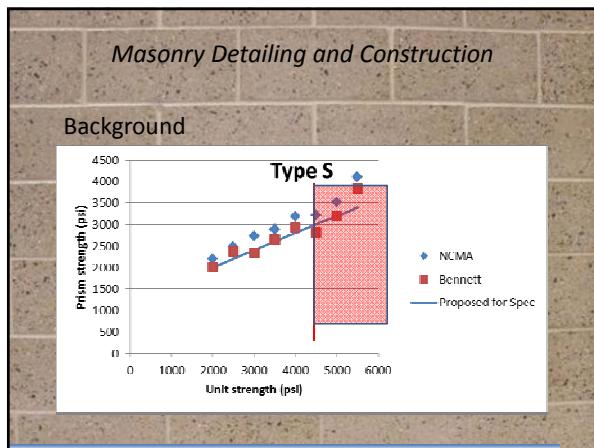
Net area compressive strength of concrete masonry units, psi		Net area compressive strength of masonry, psi
Type M or S mortar	Type N mortar	
---	1,900	1,350
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

Masonry Detailing and Construction

2013 TMS 602, Specification for Masonry Structures - Proposed

Table 2—Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction



Net area compressive strength of concrete masonry units, psi		Net area compressive strength of masonry, psi
Type M or S mortar	Type N mortar	
---	1,900	1,250
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000
4,875	---	3,500
5,500	---	4,000





Masonry Detailing and Construction		
2013 TMS 602, Specification for Masonry Structures - Accepted		
Table 2—Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction		
Net area compressive strength of concrete masonry units, psi	Type M or S mortar	Net area compressive strength of masonry, psi
---	1,900 1,900	1,250 1,700
1,900 1,900	2,150 2,350	1,500 1,900
2,000 2,000 2,000	2,050 2,000 2,650	2,000
2,750 2,500 3,250	4,050 2,500 4,350	2,500
4,800 5,250 4,500	5,250 ---	3,000
4,875	---	3,500
5,500	---	4,000

Masonry Detailing and Construction		
2013 TMS 602, Specification for Masonry Structures		
Table 2—Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction		
Net area compressive strength of concrete masonry units, psi	Type M or S mortar	Net area compressive strength of masonry, psi
---	1,900	1,700
1,900	2,350	1,900
2,000	2,650	2,000
3,250	4,350	2,500
4,500	---	3,000

Masonry Detailing and Construction		
2013 TMS 602, Specification for Masonry Structures		
Table 2—Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction		
Net area compressive strength of concrete masonry, psi	Net area compressive strength of concrete masonry units, psi	
	Type M or S mortar	Type N mortar
1,700	---	1,900
1,900	1,900	2,350
2,000	2,000	2,650
2,250	2,660	3,400
2,500	3,250	4,350
2,750	3,900	---
3,000	4,500	---

Masonry Detailing and Construction		
Background		
<ul style="list-style-type: none"> • How did we get there? 		
<ul style="list-style-type: none"> – Research – NCMA – Proposal – TMS 602/MSJC Committee – Rejection – TMS 602/MSJC Committee – Task Group – Assigned by MSJC <ul style="list-style-type: none"> • Iteration • Compromise – Successful Ballot – TMS 602/MSJC Committee 		

Masonry Detailing and Construction

- Base design of masonry ($f'm$) has been 1,500 psi
 - Why? – Verification of design strength ($f'm$)
 - Low value on Unit Strength Table is 1,500 psi

(TMS 602) Table 2-Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction

Net area compressive strength of concrete masonry units, psi (MPa)	Net area compressive strength of masonry, psi (MPa)
Type M or S Mortar	Type N Mortar
---	1,900 (13.10)
1,900 (13.10)	2,150 (14.82)
2,800 (19.31)	3,050 (21.03)
3,750 (25.86)	4,050 (27.92)
4,800 (33.10)	5,250 (36.20)
	1,500 (10.34)
	2,000 (13.79)
	2,250 (15.51)
	2,500 (17.24)
	2,750 (18.96)
	3,000 (20.69)
	3,000 (20.69)

Masonry Detailing and Construction

- Changes coming – increase in CMU strength
 - ASTM C90-14 requires CMU to be 2,000 psi

(TMS 602) Table 2-Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction

Net area compressive strength of concrete masonry units, psi (MPa)	Net area compressive strength of concrete masonry units, psi (MPa)	Type M or S Mortar	Type N Mortar
1,700 (11.72)	---	1,900 (13.10)	1,900 (13.10)
1,900 (13.10)	2,000 (13.79)	2,000 (13.79)	2,350 (16.20)
2,250 (15.51)	2,600 (17.93)	2,600 (17.93)	2,650 (18.27)
2,500 (17.24)	3,250 (22.41)	3,250 (22.41)	3,400 (23.44)
2,750 (18.96)	3,900 (26.89)	3,900 (26.89)	4,350 (28.96)
3,000 (20.69)	4,500 (31.03)	4,500 (31.03)	---

Masonry Detailing and Construction

- Not so fast—not everything gets increased by $\frac{1}{3}$ rd
- For example-Reinforcement development length

$$l_d = \frac{0.13d_b^2 f_y \gamma}{K \sqrt{f_m'}} = 23 \text{ in. (for 2000 psi), 20 in for (1,500 psi)}$$

+ 15%

- And ASD in-plane shear stress

$$1.5 \sqrt{f_m'} = 58 \text{ psi (for 2000 psi), 67 psi for (1,500 psi)}$$

+ 15.5%

Masonry Detailing and Construction

Moving Forward

- Some Thoughts to Ponder
 1. If a low bidder is really low, a higher level of QA verification may be required
 2. Many contractors are willing to go the extra mile if they know where that extra mile is
 3. Communication leads to Quality

MIH MASONRY INSTITUTE OF HAWAII

MIA

Thank You

John Chrysler
jc@masonry.pro
 (310) 257-9000
 (800) 221-4000
www.masonryinstitute.org

Questions

