

**Software, Sustainability,
Design, Detailing, – Through the
Lens of Concrete Masonry**

Masonry Institute of Hawaii – August 5, 2022
Jason Thompson – VP Engineering, NCMA
(jthompson@ncma.org)

ncma.org

1

Logistics – Downloading Software
Free trial here:
<https://ncma.org/resources/software/>

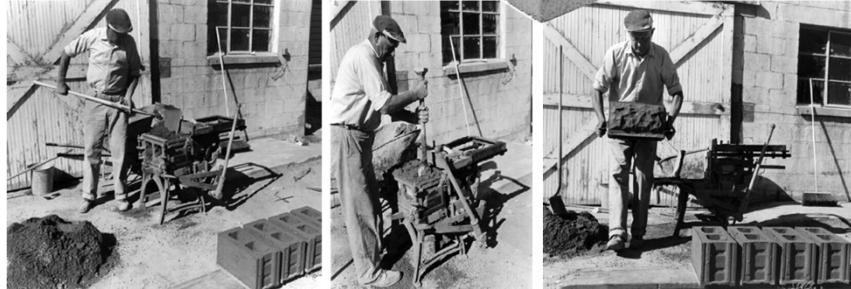
Applies to both EleMasonry and the Direct Design software packages.

3

Logistics – Ask Questions!
Ask questions any time!

Or shoot me an email if you forget:
Jason Thompson
jthompson@ncma.org
703-713-1900

2


Logistics – Today's Schedule
Todays' Topics

- EleMasonry Software Package
- Direct Design Software Package
- Key Design Changes for Concrete Masonry
- Detailing for Energy Efficiency
- Carbon Footprint and Resiliency
- Other items on your mind...open Q&A

ncma.org

4

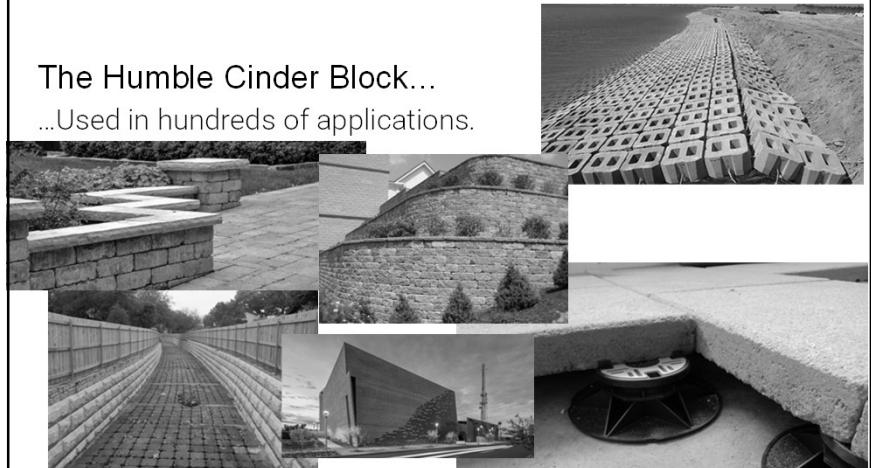
The Humble Cinder Block...
From it's early beginnings...

5

The Humble Cinder Block...
To thousands of products...

7

The Humble Cinder Block...
From it's early beginnings...



CMU Eras
1880s: Birth
1920s – 1960s: Faster, cheaper, more consistent.
1960s – 2000s: Product and application innovation
Today: Material evolution

ncma.org

6

The Humble Cinder Block...
...Used in hundreds of applications.

8

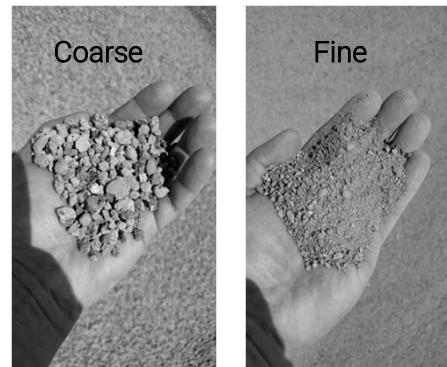
Dry-Casting – Production Overview

9

Dry-Casting – Production Overview

Other unique production variables:

Regrind


ncma.org

11

Dry-Casting – Production Overview

Other unique production variables:

Aggregate Size

10

Dry-Casting – Production Overview

Other unique production variables:

Regrind

12

Dry-Cast Manufactured Concrete

While dry-cast manufactured concrete is concrete, its combination of constituent materials, manufacturing methods, and curing process facilitate innovations in material use.

And...

ncma.org

13

Dry-Cast Products – Circular Concepts

Design Intent vs. Inherent Attribute?

Segmental Retaining Walls

15

Dry-Cast Manufactured Concrete

The modular, segmental characteristics of manufactured concrete products are uniquely suited for adaptive reuse...with some challenges.

ncma.org

14

Dry-Cast Products – Circular Concepts

Design Intent vs. Inherent Attribute?

Segmental Retaining Walls

16

Dry-Cast Products – Circular Concepts

Design Intent vs. Inherent Attribute?

Interlocking Concrete Pavers

ncma.org

17

Dry-Cast Products – Circular Concepts

Design Intent vs. Inherent Attribute?

Concrete Masonry

Dry-stack CMU

**Design and Construction
Guidelines for Dry-Stack
Concrete Masonry
(TMS-1430-21)**

ncma.org

19

Dry-Cast Products – Circular Concepts

Design Intent vs. Inherent Attribute?

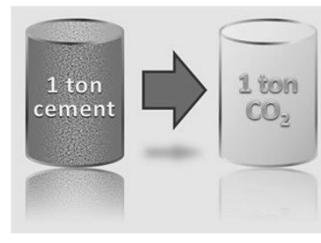
Concrete Masonry

Mortar, grout, and rebar
present challenges.

18

Dry-Cast Products – Circular Concepts

Dry-cast manufactured concrete products (by accident?)
are specifically tailored to adapt and align with circular
economy objectives.

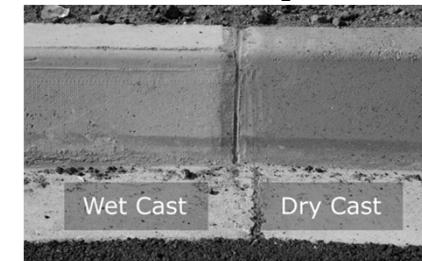

ncma.org

20

Dry-Cast Products – Carbon Sequestration

The other key market driver for the industry is minimizing our carbon footprint.

Production of portland cement is carbon intensive.



ncma.org

21

Dry-Cast Products – Carbon Sequestration

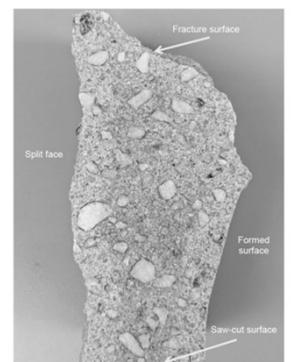
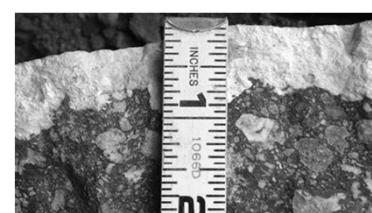
The assumption was that dry-cast and wet-cast concrete carbonate at roughly the same rate and therefore sequester about the same amount of CO₂.

ncma.org

23

Dry-Cast Products – Carbon Sequestration

There are numerous carbon capture, accelerated carbonation, and related technologies in use and in development today that permanently sequester CO₂.

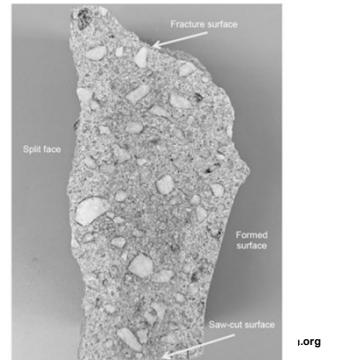
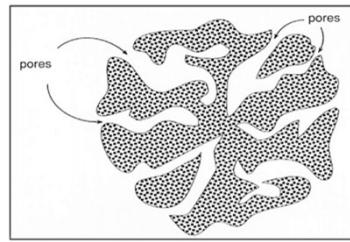


While it was well known that concrete carbonates, we didn't have a good baseline for dry-cast concrete carbonation.

ncma.org

22

Dry-Cast Products – Carbon Sequestration

In reality wet-cast and dry-cast concrete carbonate at vastly different rates.

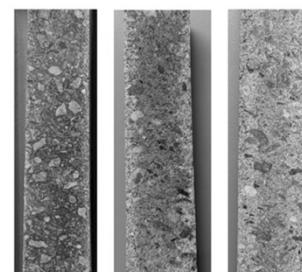



.org

24

Dry-Cast Products – Carbon Sequestration

In reality wet-cast and dry-cast concrete carbonate at vastly different rates.

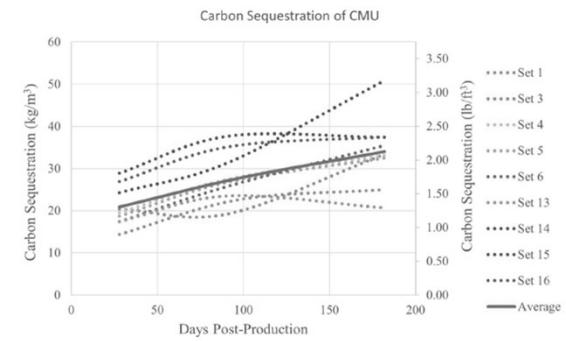


25

Dry-Cast Products – Carbon Sequestration

Research Underway:

CMU were collected from across the U.S. and Canada and allowed to naturally carbonate. TGA was performed periodically to measure carbon uptake.



26

Dry-Cast Products – Carbon Sequestration

Research Underway:

28 Day Uptake:
21 kg/m³

27

Questions?

28

EleMasonry – Structural Masonry Design Software (V6)

Revision August 2, 2021

ncma.org

29

Software Navigation and Overview

ncma.org

30

Access

Free trial here:
<https://ncma.org/resources/software/>

Applies to both EleMasonry and the Direct Design software packages.

31

Overview

EleMasonry – Elemental Masonry Design

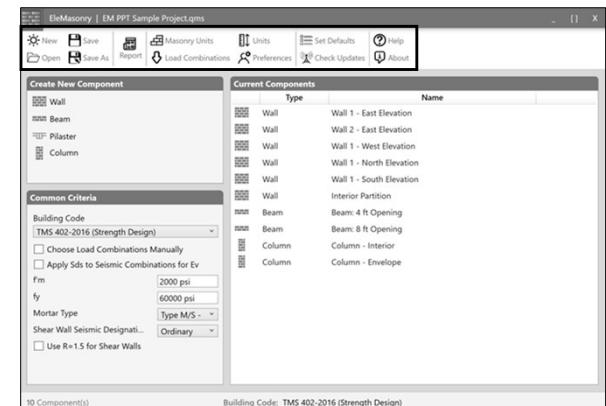
- Designs individual masonry elements:
 - Columns
 - Walls
 - Beams
 - Pilasters
- Sister software to QuickMasonry (through IES)

ncma.org

32

Overview

EleMasonry – Elemental Masonry Design


- Intuitive interface
- Transparent reporting.
- Real-time design results.
- Annual license subscription (free upgrades)

33

ncma.org

Navigation: Menu Ribbon

General Navigation

ncma.org

35

EleMasonry vs. Direct Design Software Packages

Direct Design is a platform for designing masonry buildings...

EleMasonry is a platform for designing masonry elements...

34

ncma.org

Navigation: Menu Ribbon

Project File Navigation (open, save, etc.)

ncma.org

36

Navigation: Menu Ribbon

Report Generation

Masonry Wall Design Calculations

Moment Check @ Mid-span

The moment capacity M_u is determined by considering the point on the interaction diagram where σ_u is equal to the axial load at this section (37.11 k) and thus $R_u = 41.23$ k. The associated M_u (46.02 ft-k) is multiplied by β to obtain design moment capacity.

At an axial load of 37.11 k, the interaction diagram gives a moment capacity of 41.4 ft-k.

$\beta = M_u / M_u^* = 0.95$

$M_u^* = 46.02 \text{ ft-k}$

$M_u = 46.02 \times 0.95 = 44.21 \text{ ft-k}$

Interaction Diagram

Diagram showing the interaction between axial load and moment. The axial load is 37.11 k, and the moment capacity is 44.21 ft-k. The yield moment is 46.02 ft-k.

Material Properties

Material: CMU (Clay). Taken from Unit Specification Weight: 150 lb/ft³. Block Weight: Normal Weight. Built with Concrete with Rough Surface No. 4. Mortar Type: Type M (100% Portland Cement/Cement). Double Strength Designation: Ordinary. Use R=1.5 for Shear Walls: No. Amplify Axial Stress For Stendment: No. End Bars Only For Shear Wall Flexural/Residual Analysis: No.

Design

Strength Design: ACI 318-16 Strength Combinations. Apply Sets to Seismic Combinations: No. Use R=1.5 for Shear Walls: No.

Wall Design

Wall: Wall 1 - East Elevation. Length: 30 ft. Masonry Unit Bond: Running Bond. Grouting: Partial. Vertical Distributed Rebar: No. 4, spaced as shown (1 per course). Horizontal (Bond Beam) Rebar: No. 4, spaced as shown (1 per course).

Load Combinations

Wall 1 - East Elevation. Masonry Unit Bond: Running Bond. Grouting: Partial. Vertical Distributed Rebar: No. 4, spaced as shown (1 per course). Horizontal (Bond Beam) Rebar: No. 4, spaced as shown (1 per course).

Units

Units: Units. Set Defaults: Set Defaults. Preferences: Preferences. Check Updates: Check Updates. About: About.

37

Navigation: Menu Ribbon

Masonry Unit Configurations

Custom Units

Masonry Unit Sizes

Name	Vendor	Material	Thickness (nominal) (in)	Cell Module Spacing (in)	Can be Partially Grouted	Valid Through
Atlas 6x4x16	Interstate Brick	Clay	6	8	True	12/16/2021
Atlas 8x4x16	Interstate Brick	Clay	8	8	True	12/16/2021
HI-R 10" (2.5" insul.)	Concrete Products Group	Concrete (CMU)	10	8	True	1/21/2022
HI-R 12" (2.5" insul.)	Concrete Products Group	Concrete (CMU)	12	8	True	1/21/2022
HI-R-H 10" (3.5" insul.)	Concrete Products Group	Concrete (CMU)	10	8	False	12/14/2021
HI-R-H 12" (3.5" insul.)	Concrete Products Group	Concrete (CMU)	12	8	False	12/14/2021

Find Units Proprietary units must be downloaded and installed.

OK

ncma.org

39

Navigation: Menu Ribbon

Masonry Unit Configurations

Standard Units

Masonry Unit Sizes

Standard		Proprietary						
Name	Thickness (actual) (in)	Thickness (nominal) (in)	Height (in)	Face Shell Thickness (in)	Web Thickness (in)	Cell Module Spacing (in)	Grouted Cell Volume (in ³)	Ungrouted Cell Volume (in ³)
CMU - 6 in.	5.63	6	8	1	0.75	8	360	149.75
CMU - 8 in.	7.63	8	8	1.25	0.75	8	488	190.75
CMU - 10 in.	9.63	10	8	1.25	0.75	8	616	202.75
CMU - 12 in.	11.63	12	8	1.25	0.75	8	744	214.75
CMU - 14 in.	13.63	14	8	1.25	0.75	8	872	226.75
CMU - 16 in.	15.63	16	8	1.25	0.75	8	1,000	238.75

OK

ncma.org

38

Navigation: Menu Ribbon

Masonry Unit Configurations

Custom Units

Masonry Units

Dimensions

Height: 12 ft, Parapet Height: 2 ft, Length: 20 ft, Masonry Unit Size: CMU - 10 in.

Configuration

CMU - 6 in., CMU - 8 in., CMU - 10 in., CMU - 12 in., CMU - 14 in., CMU - 16 in., Atlas 6x4x16, Atlas 8x4x16, HI-R 10" (2.5" insul.), HI-R 12" (2.5" insul.), HI-R-H 10" (3.5" insul.), HI-R-H 12" (3.5" insul.), Has Extra End Bars.

ANALYSIS

Force Calcs: OUT-OF-PLANE, Force Calcs: IN-PLANE, Interaction: OUT-OF-PLANE, Interaction: IN-PLANE, Section Analysis: OUT-OF-PLANE, Section Analysis: IN-PLANE, Checks: Strength Checks.

Strength Checks

Horizontal Bar/Wire Spacing: HI-R-H 12" (3.5" insul.), HI-R-H 12" (4" insul.).

OK

ncma.org

40

Navigation: Menu Ribbon

Load Combinations

2002-2016 ASCE 7 (strength and allowable stress)

ncma.org

41

Navigation: Menu Ribbon

User Preferences

Included on reports.

ncma.org

43

Navigation: Menu Ribbon

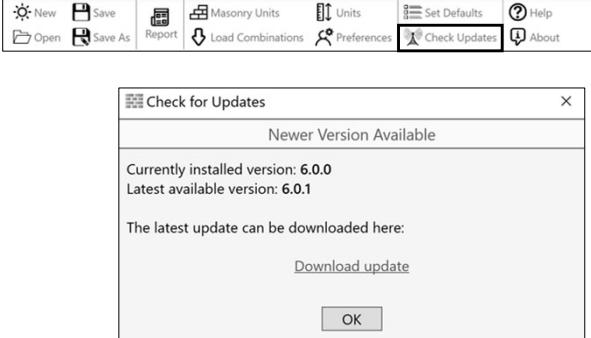
Units of Measurement

User Defined Options

ncma.org

42

Navigation: Menu Ribbon

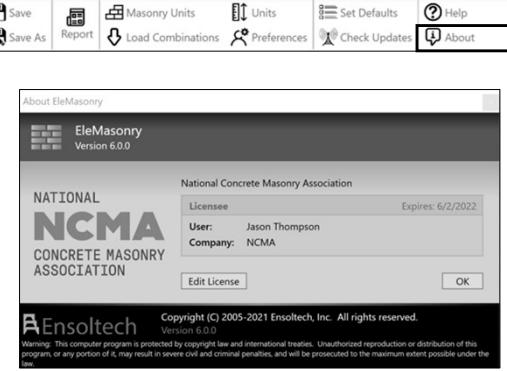

Set Software Defaults to User Preferences

ncma.org

44

Navigation: Menu Ribbon

Check for Software Updates

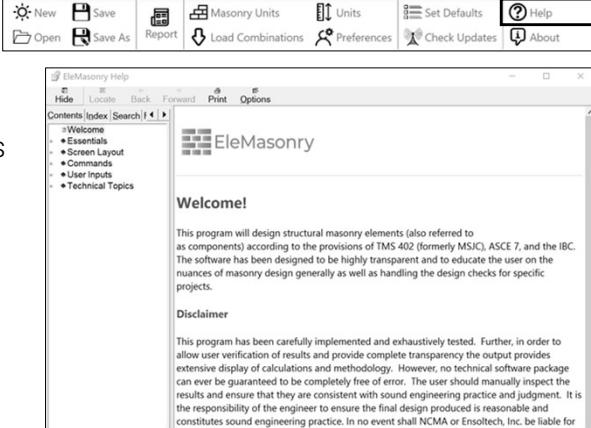


ncma.org

45

Navigation: Menu Ribbon

Check Licensing Information and Expiration



ncma.org

47

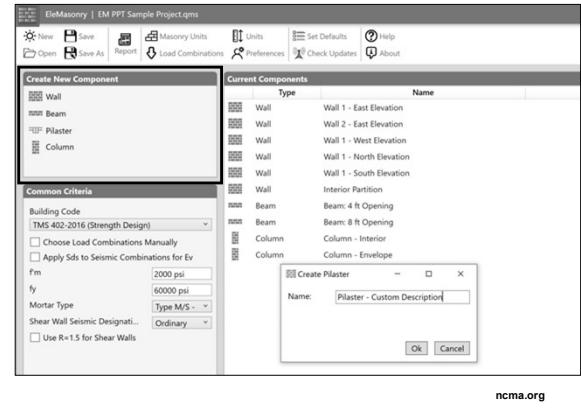
Navigation: Menu Ribbon

Access Help Files

46

Navigation: Tool Tips

Hover over to bring up content tips.

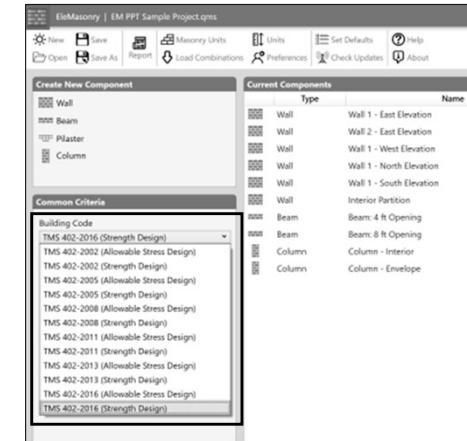

ncma.org

48

Navigation: Creating New Components

Adding New Elements

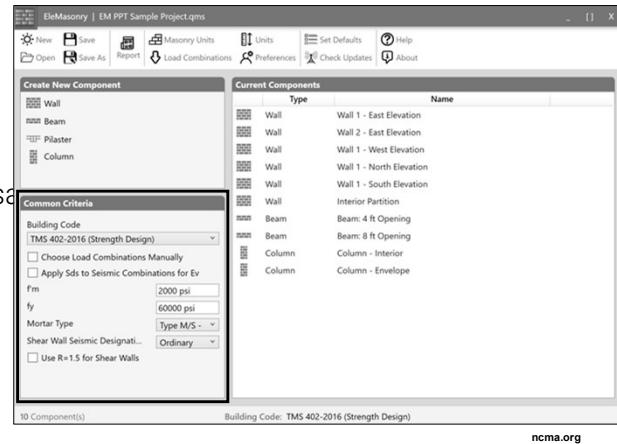
Multiple elements...single project file



49

Navigation: Universal Criteria

Defining Universal Design Criteria


- Code Edition: 2002-2016 TMS 402

51

Navigation: Universal Criteria

Defining Universal Design Criteria

50

Navigation: Universal Criteria

Defining Universal Design Criteria

- Code- or User-defined load combinations

52

Navigation: Universal Criteria

Defining Universal Design Criteria

- Code- or User-defined load combinations

Will be prompted to define strength and serviceability load combinations.

10 Component(s) Building Code: TMS 402-2016 (Strength Design) ncma.org

53

Navigation: Universal Criteria

Defining Universal Design Criteria

- Include vertical seismic loads

Will be prompted to define S_{DS} .

10 Component(s) Building Code: TMS 402-2016 (Strength Design) ncma.org

55

Navigation: Universal Criteria

Defining Universal Design Criteria

- Include vertical seismic loads

Apply Sds to Seismic Combinations for Ev
Whether to apply the Sds factor value with coefficient as an additional 'D' factor as prescribed in ASCE 7 (e.g. ASCE 7-10 12.4.2.2) to represent the vertical seismic load effect Ev. If this option is chosen it will apply to seismic load combinations (those that include 'E').

10 Component(s) Building Code: TMS 402-2016 (Strength Design) ncma.org

54

Navigation: Universal Criteria

Defining Universal Design Criteria

- Masonry strength (f'_m)
- Reinforcement yield (f_y)

Apply Sds to Seismic Combinations for Ev
Whether to apply the Sds factor value with coefficient as an additional 'D' factor as prescribed in ASCE 7 (e.g. ASCE 7-10 12.4.2.2) to represent the vertical seismic load effect Ev. If this option is chosen it will apply to seismic load combinations (those that include 'E').

10 Component(s) Building Code: TMS 402-2016 (Strength Design) ncma.org

56

Navigation: Universal Criteria

Defining Universal Design Criteria

- Mortar type

57

Navigation: Universal Criteria

Defining Universal Design Criteria

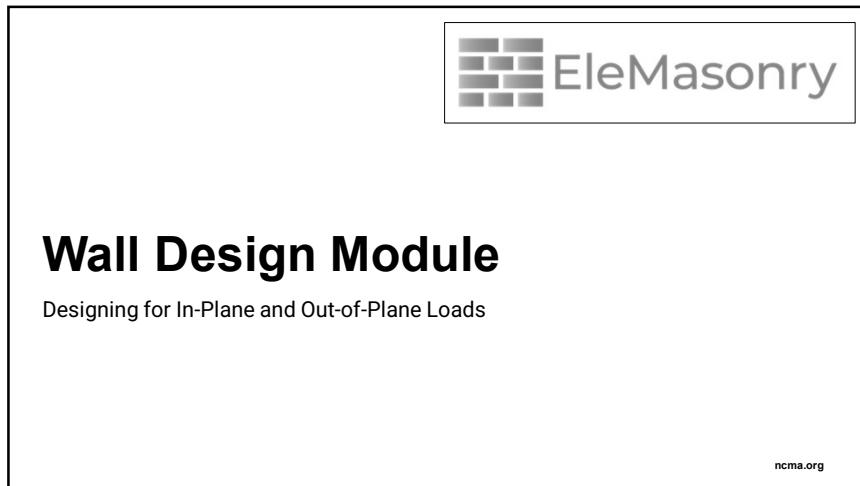
- Shear wall type

59

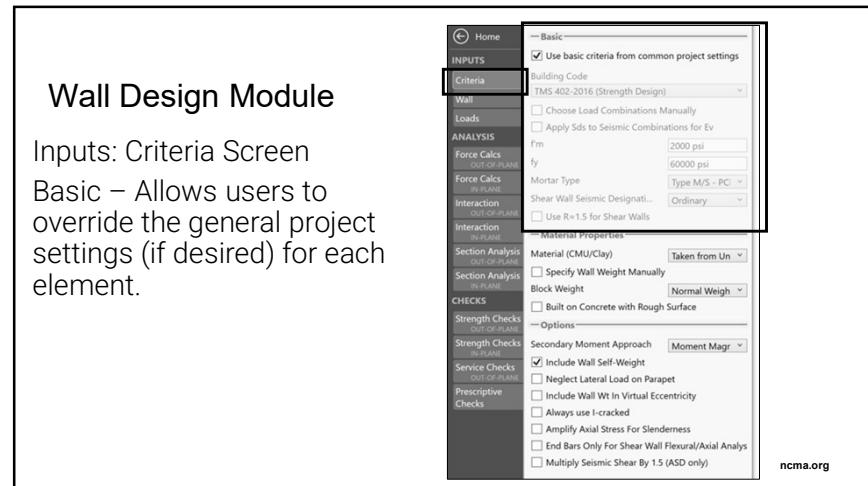
Navigation: Universal Criteria

Defining Universal Design Criteria

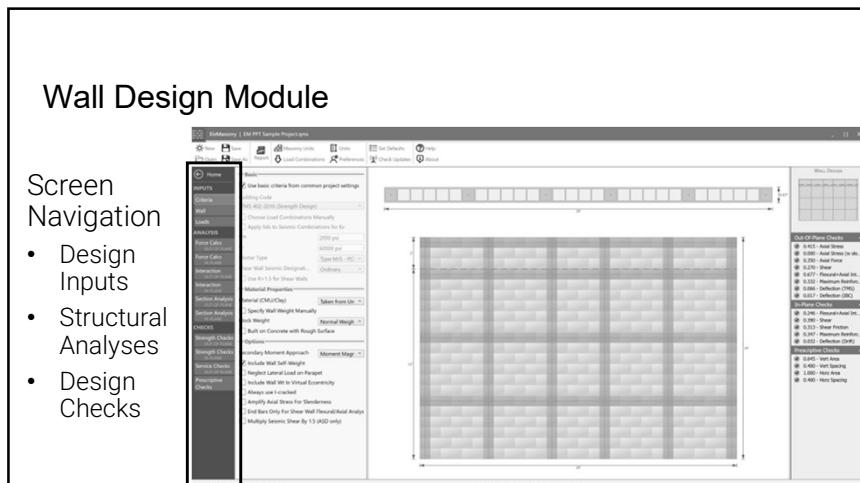
- Mortar type

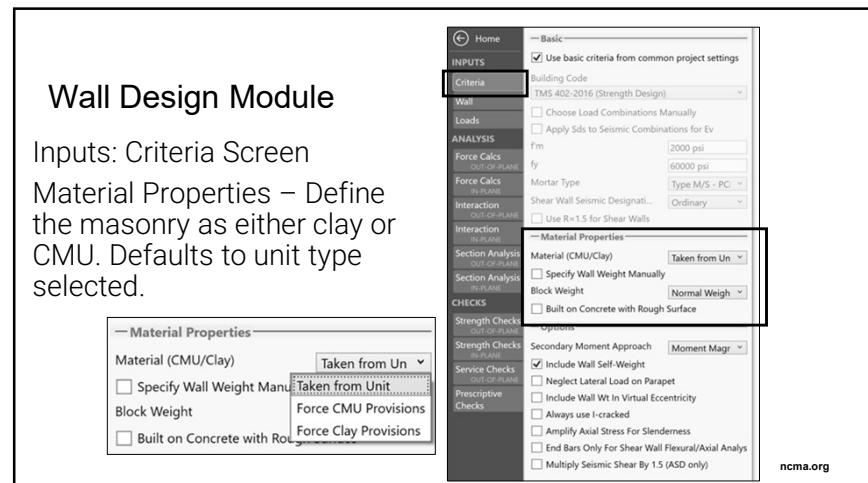

58

Navigation: Universal Criteria


Defining Universal Design Criteria

- Assume elastic response


60


61

63

62

64

Wall Design Module

Inputs: Criteria Screen

Material Properties – Specify wall density or allow the software to calculate based on CMU density.

65

Wall Design Module

Inputs: Criteria Screen

Design Options – Selecting second order analysis method.

67

Wall Design Module

Inputs: Criteria Screen

Material Properties – For shear friction checks, define interface at base of the wall.

66

Wall Design Module

Second Order Checks:

Interaction diagram will plot P-Delta and moment magnifier whiskers.

Option selected will be used for pass/fail design checks.

68

Wall Design Module

Inputs: Criteria Screen

Design Options – Option of including wall self-weight to design dead loads.

Alternatively, wall weight can be added under design loads.

69

Wall Design Module

Inputs: Criteria Screen

User Preference

Design Options – Discount beneficial contribution of lateral loads on the parapet.

71

Wall Design Module

Inputs: Criteria Screen

User Preference

Design Options – Discount beneficial contribution of lateral loads on the parapet.

70

Wall Design Module

Inputs: Criteria Screen

User Preference

Design Options – Include concentrically applied wall weight with eccentrically applied axial loads for buckling checks.

72

Wall Design Module

Inputs: Criteria Screen

User Preference

Design Options – Always use cracked section properties; otherwise uses gross section properties for pre-cracking loads and cracked section properties for post-cracking.

ncma.org

73

Wall Design Module

Inputs: Criteria Screen

User Preference

Design Options – Neglect distributed vertical reinforcement for in-plane analysis; consider only lumped reinforced at the ends of the wall.

ncma.org

75

Wall Design Module

Inputs: Criteria Screen

User Preference

Design Options – Scale axial load for slenderness checks. Only for ASD in the 2002 and 2005 TMS 402.

ncma.org

74

Wall Design Module

Inputs: Criteria Screen

Design Options – For SDC D+, in-plane shear loads are increased by 1.5 for ASD.

ncma.org

76

Wall Design Module

Inputs: Wall Screen

Dimensions – Define wall length and height, masonry unit width, and parapet height.

ncma.org

77

Wall Design Module

Inputs: Wall Screen

Reinforcement – Sets vertical and horizontal reinforcement preferences. Includes option for lumping vertical reinforcement at the ends of the wall.

ncma.org

79

Wall Design Module

Inputs: Wall Screen

Configuration – Set unit bonding and grouting preferences.

ncma.org

78

Wall Design Module

Inputs: Wall Screen

As inputs are changed, wall graphics are automatically updated.

ncma.org

80

Wall Design Module

Inputs: Wall Screen

As inputs are changed, all design checks are automatically updated and the critical/controlling conditions summarized with utilization ratio.

ncma.org

81

Wall Design Module

Inputs: Loads

Define axial, out-of-plane, and in-plane design loads.

ncma.org

83

Wall Design Module

Inputs: Wall Screen

Click-through to see details on each critical load combination.

Moment Check @ Axial Load Application Point

The moment capacity is determined by considering the point on the interaction diagram where ϕ_{n_i} is equal to the axial load at this section (370.04 k) and thus $P_n = 411.15$ k. The associated M_n (220.86 ft·k) is multiplied by ϕ to obtain design moment capacity.

At an axial load of 370.04 k, the interaction diagram gives a moment capacity of 198.73 ft·k.

$\phi M_n \geq M_u$...utilization ratio 0.463

Compression area = 2.63 ft². Depth of compression zone = 2.48 in.

ncma.org

82

Wall Design Module

Inputs: Loads

Each load type is highly customizable

ncma.org

84

Questions?

85

Why was Direct Design Created?

Code complexity...

ncma.org

87

Direct Design

**Direct Design – Structural
Masonry Design Software (V3)**

ncma.org

86


Why was Direct Design Created?

Code complexity...

1953 = 40 pages

1983 = 40 pages

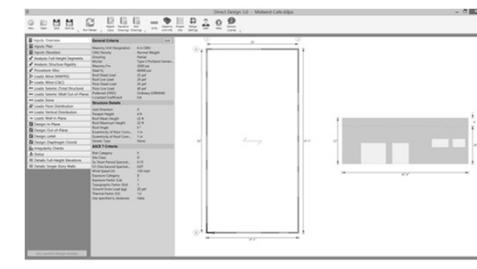
2013 = 400 pages

ncma.org

88

Why was Direct Design Created?

Codes (not just masonry) become more complex with each cycle. The Direct Design Software combines all the relevant structural masonry requirements in one package.


ncma.org

89

Software Inputs

What you need to design a project:

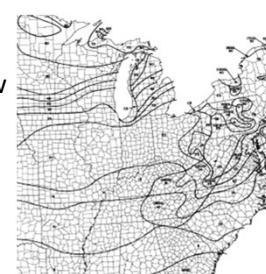
- Building location; and
- Building dimensions

ncma.org

91

Why was Direct Design Created?

Also in recognition that how we design has evolved.
We now go from idea...to concept...to design much faster.


ncma.org

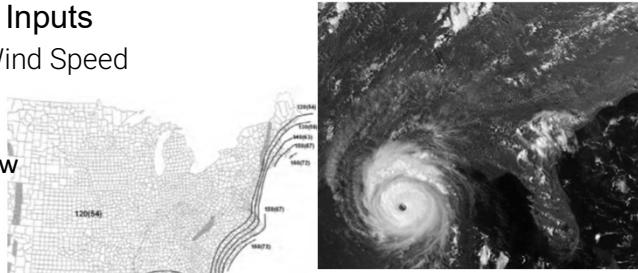
90

Software Inputs

Mapped Grout Snow Load

Need to know
this...

Software will
calculate this...


ncma.org

92

Software Inputs
Mapped Wind Speed

Need to know this...

Software will calculate this...

ncma.org

93

Software Outputs
Entire structural analysis calculations...

Reactions at Base of Segment

	Axial Reaction (k)	In-plane Reaction (ft-k)	Distributed Reaction Force Left Value (lb/ft)	Distributed Reaction Force Right Value (lb/ft)	Axial Force At Top (k)	Axial Force At Middle (k)	Out-of-plane Eccentric Moment At top (ft-k)	Out-of-plane Eccentric Moment At Middle (ft-k)
Dead	2.76	-0.60	2,283.33	-472.22	0.33	1.96	-0.06	-0.03
Snow	0.67	-0.28	750.00	-83.33	0.33	0.67	-0.06	-0.03
Wind, c.c.	0.56	-0.23	631.15	-70.82	0.28	0.56	-0.05	-0.02
Wind, invFR	0.25	-0.10	276.15	-30.68	0.12	0.25	-0.02	-0.01

Vertical distribution factor (C_v), Equation 12.8-12, p. 91:

$$C_v = \frac{w_h h^k}{\sum w_h h^k} = \frac{(333.33 \text{ k})(12.00 \text{ ft})^{1.00}}{22,000.00 \text{ ft-k}} = 0.18$$

Lateral seismic force (F_1), Equation 12.8-11, p. 91:

$$F_1 = C_v V = (0.18)(197.33 \text{ k}) = 35.88 \text{ k}$$

ncma.org

95

Software Inputs
Mapped Spectral Accelerations

Need to know this...

Software will calculate this...

ncma.org

94

Software Outputs
Entire structural analysis calculations...

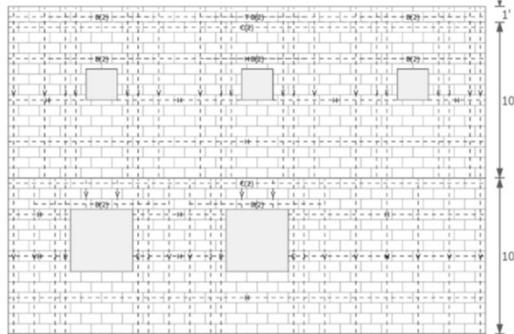
Segment 1 in Wall along grid C from 2 to 3, Story 3

This segment is 16' 8" long and reinforced with 9 #6 bars.

✓ **Moment check**
 $\phi M_u = 1,426.40 \text{ ft-k}$, $M_u = 4.17 \text{ ft-k}$

✓ **Shear check**
 $V_u = 203.69 \text{ k}$, $V_s = 287.03 \text{ k}$, $V_a = 345.55 \text{ k}$, $\phi V_u = 276.44 \text{ k}$, $V_{Pac,Comp} = 184.38 \text{ k}$, $V_{Pac,Tens} = 178.30 \text{ k}$, $V_s = 20.00 \text{ k}$

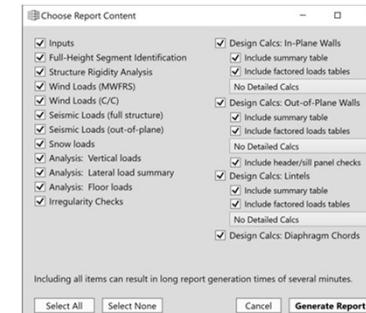
✓ **Deflection check**
 $\delta_{defl} = 0.01 \text{ in}$, $\delta_{defl,elec} = 0.01 \text{ in}$, $\delta_{max} = 1.20 \text{ in}$, $I_{gross} = 5,083,333.33 \text{ in}^4$,
 $I_{defl} = 2,660,517.33 \text{ in}^4$, $I_{max} = 5,083,333.33 \text{ in}^4$, $I_{defl} = 2,033,333.33 \text{ in}^4$


✓ **Rho Max check**
 $P_u = 10.00 \text{ k}$, $P_{u,sus,SSE} = 305.00 \text{ k}$, SSE condition 1 met = True, $M_u/V_u d_u = 0.60$, SSE condition 2 met = True, $A_w = 1,525.00 \text{ in}^2$, True, ρ_{max} check required = False, $\epsilon_r = 0.00$, $\epsilon_{max} = 0$, $A_{max} = 225.88 \text{ in}^2$, $A_t = 3.96 \text{ in}^2$

The presence of irregularities impacts the design procedure and the general applicability of Direct Design.

96

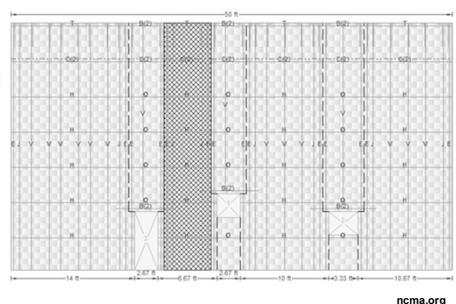
Software Outputs


To the final design...

97

Software Outputs

With options for detailed or summarized reports.


99

Software Outputs

While flagging sections that the software couldn't find a solution to.

Code Compliance Status

- Wall Segments (In-Plane Loading):** All 24 are passing
- Wall Segments (Out-of-Plane Loading):** 9 out of 24 are failing
- Unbraced: 48' 10" are crossing**
- Diaphragm Levels (Third Periodic Movement):** The single level in this Klossular process
- Structure Not In-Plane/Aligned**

98

What Direct Design Does Not Do...

Does not design the diaphragms (roof/floor).
 Does not design the foundation.
 Does not design the connection system between the masonry and supports.

Limited to the structural and non-structural masonry components.

ncma.org

100

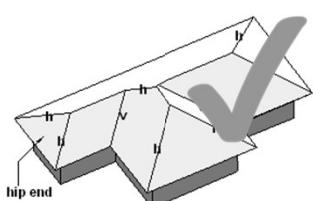
Limitations

Mapped wind speed < 250 mph

101

Limitations

Architectural features



ncma.org

103

Limitations

Building height < 60 feet.
No funky roofs.

ncma.org

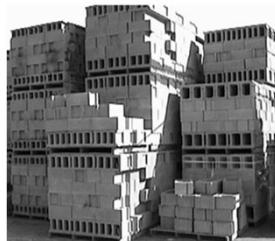
102

Limitations

- Cladding weight < 50 psf.
- No complex diaphragms.

3.2.8.4 Diaphragm Classification – Diaphragms shall be classified as either flexible or rigid in accordance with Table 3.2.8.4.

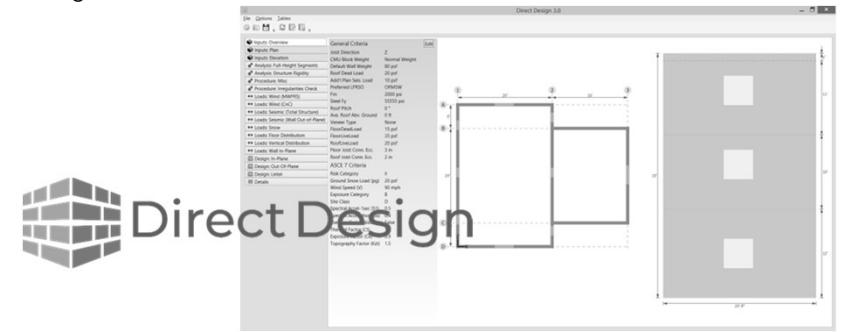
Table 3.2.8.4 – Diaphragm Classification


Diaphragm Construction	Diaphragm Classification
Wood structural panels	Flexible
Untopped steel decking	Flexible
Concrete slab	See Section 3.2.8.4.1
Concrete filled deck	See Section 3.2.8.4.1
Other – flexible diaphragm	Flexible
Other – rigid diaphragm	Rigid

ncma.org

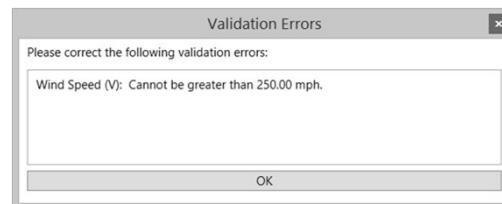
104

Limitations


- Standard ASTM C90 block.
- Grade 60 reinforcement.
- Conventional mortar and grout.
- No extreme loading (e.g., blast).

105

Software Demo


Using the software...

107

Limitations

If a software input isn't covered by Direct Design, an error message will appear.

ncma.org

106

Questions?

108

Evolution of Concrete Masonry Design – Key Code Changes

ncma.org

109

The Evolution of the CMU

- Concrete masonry unit/CMU
- Cinder block
- Cement/Concrete block
- Breeze block

Product of many names...

ncma.org

110

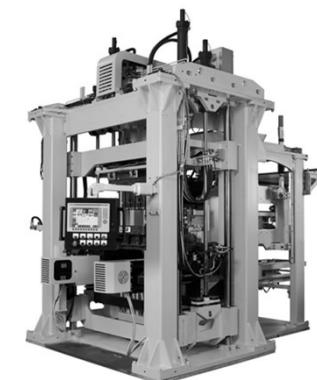
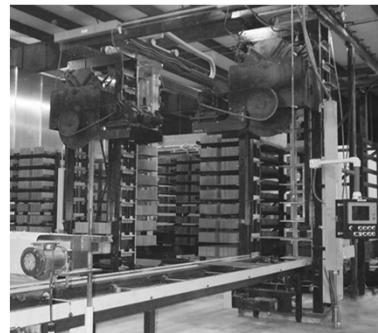
The Evolution of the CMU

Once upon a time...

111

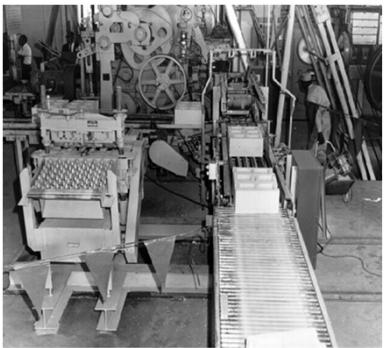
The Evolution of the CMU

cma.or



112

The Evolution of the CMU

113


The Evolution of the CMU

ncma.org

115

The Evolution of the CMU

114

The Evolution of the CMU

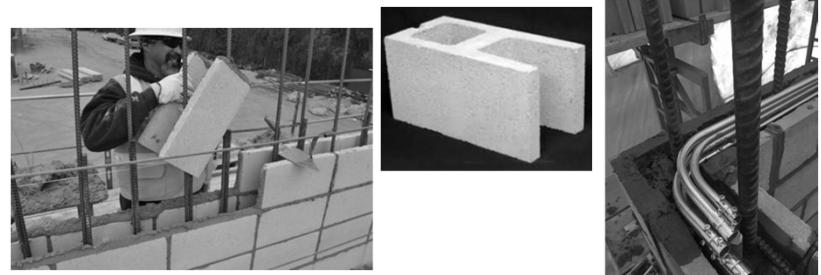
- 1860s – first block machine patents issued.
- 1910s – unit dimensions standardized.
- 1924 – first version of ASTM C90 published; covered only the very basic properties.
- 1930s – advancements in manufacturing technology allowed thinner face shells and webs...to what end?

ncma.org

116

The Evolution of the CMU

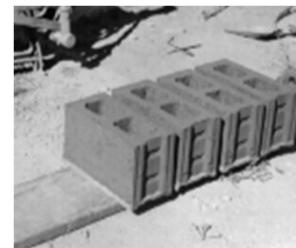
- 1940s – CMU configurations were standardized through ASTM.


TABLE 1 Minimum Thickness of Face Shells and Webs^A

Nominal Width (W) of Units, in. (mm)	Face Shell Thickness (t_f), min. in. (mm) ^{B,C}	Web Thickness (t_w)	
		Webs ^{B,D,C} min. in. (mm)	Equivalent Web Thickness, min. in./linear ft ^E (mm/linear m)
3 (76.2) and 4 (102)	5/8 (19)	5/8 (19)	1 1/8 (136)
6 (152)	1 (25)	1 (25)	2 1/4 (188)
8 (203)	1 1/4 (32)	1 (25)	2 1/4 (188)
10 (254) and greater	1 1/4 (32)	1 1/8 (29)	2 1/2 (209)

117

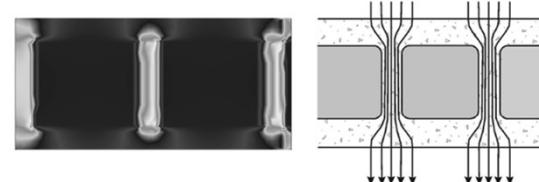
The Evolution of the CMU


But the marketplace evolved faster than ASTM.

119

The Evolution of the CMU

If visiting a job site in 1940 versus 2010, the CMU would look nearly identical.


ncma.org

118

The Evolution of the CMU

The big driver, however, was the push in recent years to reduce carbon footprints and increase energy efficiency.

- Heat flows through the webs.
- Reduce the webs – increase the R-value

120

The Question:

Why do we need a three web, two cell unit??

Structurally, the webs play a key role in the performance/integrity of the assembly. Shear transfer for out-of-plane flexure, tensile splitting under axial compression, etc.

ncma.org

121

The Findings:

A standard three web, two cell unit provides a worse case factor of safety of 37...about 10 times higher than what we generally target for a reasonable factor of safety.

Way, way more than what is needed.

ncma.org

123

The Question:

Research followed to determine how much we is necessary...

$$I_n = \left(\frac{1}{12}\right)(15.625)(7.625)^3 - \left(\frac{1}{12}\right)(7.4375)(5.125)^3 (2)I_n \\ = 410.4 \text{ in.}^4$$

$$Q = (1.25)(15.625)(3.1875) + (0.75)(2.5625)(1.28125) \\ Q = 64.7 \text{ in.}^3$$

$$b = 0.75 \text{ in.}$$

$$V = (220)(16)/12 = 293.3 \text{ lb}$$

ncma.org

122

The Changes:

ASTM C90 was changed to allow less web(s) in CMU.

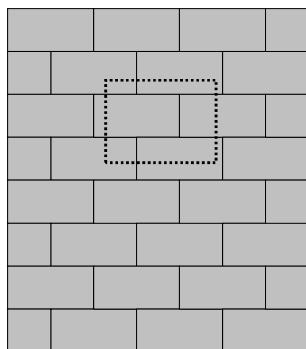
Cells and Web Requirements^A

Nominal Width (W) of Units, in. (mm)	Face Shell Thickness (t _u), min. in. (mm) ^B	Webs	
		Web Thickness ^C (t _w), min. in. (mm)	Normalized Web Area (A _{nw}), min. in. ² /ft ² (mm ² /m ²) ^D
8 (192) and 4 (102)	5/16 (19)	5/16 (19)	6.5 (45, 140)
8 (192)	1/2 (32)	1/2 (32)	6.5 (45, 140)
8 (192) and greater	11/16 (32)	11/16 (32)	6.5 (45, 140)

^A Maximum thickness of a unit is a maximum of 3 times the requirement as described in Test Method C140.

^B When this standard is used for units having split surfaces, a maximum of 10 % of the split surface is permitted to have thickness less than those shown, but not less than 1/16 in. (1.6 mm).

^C When the units are to be solid grouted, minimum face shell and web thickness shall be not less than 1/8 in. (16 mm).


^D Minimum normalized web area does not apply to the portion of the unit to be filled with grout. The length of that portion shall be deducted from the overall length of the unit for the calculation of the minimum web cross-sectional area.

ncma.org

124

The Changes:


Literally, this new requirement means that for every square foot of wall surface, no less than 6.5 in.² of web must connect the front and back face shells, with no web measuring less than 0.75 in. in thickness.

125

The Changes:

Three web assembly:

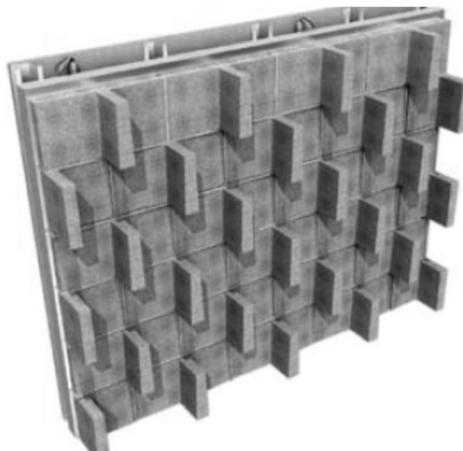
127

The Changes:

Today there is more flexibility in CMU configurations to meet varying project objectives/demands.

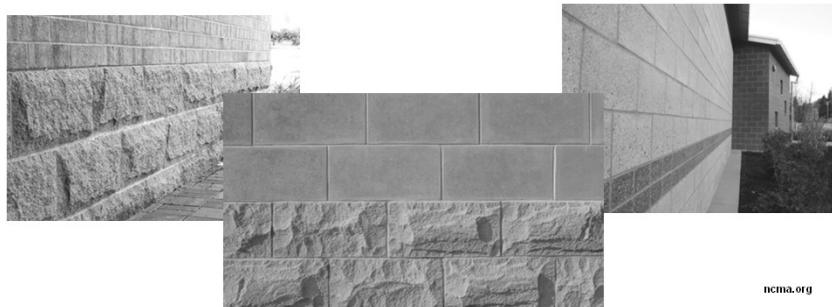
126

The Changes:


Two web assembly:

128

The Changes:


One web assembly:

129

The Changes:

With the same aesthetic and functionality.

130

Design Implications

Design of alternative web configurations is exactly the same, except if designing unreinforced masonry or if incorporating integral insulation – which requires a supplemental check of the web shear stresses.

$$f_v = \frac{VQ}{I_n b} \leq 1.5 \sqrt{f_m \cdot m}$$

ncma.org

131

Design Implications

Section Properties:

Stretcher
Block

A Block

ncma.org

132

Design Implications

Section Properties:

		Three-Web Corner Unit	Three-Web Stretcher Unit	
Face Shell	Net Area (An)	30.0	30.0	
Bedding Only	Net MOI (In)	308.7	308.7	
Full Mortar	Net Area (An)	38.6	38.6	
Bedding	Net MOI (In)	327.6	327.6	
	Net Area (An)	90.1	84.3	
Solid Grouted	Net MOI (In)	440.2	427.5	
	Net Area (An)	61.5	58.6	
Grout @ 16 in.	Net MOI (In)	383.9	371.3	
	Net Area (An)	34.2	33.8	
Grout @ 120 in.	Net MOI (In)	317.9	317.0	ncma.org

133

Design Implications

Summary:

While on the surface this change to ASTM C90 may appear radically substantive, in reality it simply brings the standards in line with today's practice.

Most importantly, it was implemented in such a way that concrete masonry is designed and constructed the same as it has been historically.

ncma.org

135

Design Implications

Section Properties:

		Three-Web Corner Unit	Three-Web Stretcher Unit	A-Block	H-Block
Face Shell	Net Area (An)	30.0	30.0	30.0	30.0
Bedding Only	Net MOI (In)	308.7	308.7	308.7	308.7
Full Mortar	Net Area (An)	38.6	38.6	35.8	32.9
Bedding	Net MOI (In)	327.6	327.6	321.4	315.1
	Net Area (An)	90.1	84.3	91.5	91.5
Solid Grouted	Net MOI (In)	440.2	427.5	443.3	443.3
	Net Area (An)	61.5	58.6	65.8	NA
Grout @ 16 in.	Net MOI (In)	383.9	371.3	387.0	NA
	Net Area (An)	34.2	33.8	34.8	NA
Grout @ 120 in.	Net MOI (In)	317.9	317.0	319.0	ncma.org

134

Structural Design Properties

Changes to web requirements can increase the R-value of a CMU assembly by 50%...100%...200%...

Similar changes have also brought much more structural efficiency to concrete masonry.

136

Structural Design Properties

Unit Strength Method – Historical

Table 2 — Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction

Net area compressive strength of concrete masonry units, psi (MPa)		Net area compressive strength of masonry, psi ¹ (MPa)
Type M or S mortar	Type N mortar	
—	1,900 (13.10)	1,350 (9.31)
1,900 (13.10)	2,150 (14.82)	1,500 (10.34)
2,800 (19.31)	3,050 (21.03)	2,000 (13.79)
3,750 (25.86)	4,050 (27.92)	2,500 (17.24)
4,800 (33.10)	5,250 (36.20)	3,000 (20.69)

¹ For units of less than 4 in. (102 mm) height, 85 percent of the values listed.

137

Structural Design Properties

Unit Strength Method – Historical

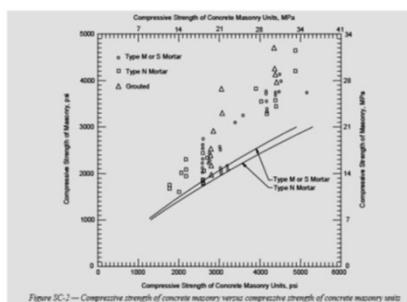


Figure SC-2 — Compressive strength of concrete masonry versus compressive strength of concrete masonry unit

138

Structural Design Properties

Unit Strength Method – New Research Data

ncma.org

139

Structural Design Properties

Unit Strength Method

Net area compressive strength of concrete masonry units, psi (MPa)		Net area compressive strength of masonry, psi ¹ (MPa)
Type M or S mortar	Type N mortar	
—	1,900 (13.10)	1,350 (9.31)
1,900 (13.10)	2,150 (14.82)	1,500 (10.34)
2,800 (19.31)	3,050 (21.03)	2,000 (13.79)
3,750 (25.86)	4,050 (27.92)	2,500 (17.24)
4,800 (33.10)	5,250 (36.20)	3,000 (20.69)

Table 2: Compressive strength of masonry based on the compressive strength of concrete masonry units and type of mortar used in construction

Net area compressive strength of concrete masonry units, psi (MPa) ¹	Net area compressive strength of ASTM C90 concrete masonry units, psi (MPa)	
	Type M or S mortar	Type N mortar
1,750 (12.07)	---	2,000 (13.79)
2,000 (13.79)	2,000 (13.79)	2,650 (18.27)
2,250 (15.51)	2,600 (17.93)	3,400 (23.44)
2,500 (17.24)	3,250 (22.41)	4,350 (28.96)
2,750 (18.96)	3,900 (26.89)	-----
3,000 (20.69)	4,500 (31.03)	-----

¹ For units of less than 4 in. (102 mm) nominal height, use 85 percent of the values listed.

ncma.org

140

Structural Design Properties

Unit Strength Method – New Research Data

Historically, ASTM C90 required a minimum CMU compressive strength of 1,900 psi. Now requires a minimum of 2,000 psi. Hence, stock materials will yield $f'_m = 2,000$ psi.

TABLE 2 Strength, Absorption, and Density Classification Requirements

Density Classification	Oven-Dry Density of Concrete, lb/ft ³ (kg/m ³)	Maximum Water Absorption, lb/ft ³ (kg/m ³)		Minimum Net Area Compressive Strength, lb/in ² (MPa)
		Average of 3 Units	Individual Units	
Lightweight	Less than 105 (1680)	18 (288)	20 (320)	2000 (13.8)
Medium Weight	105 to less than 125 (1680–2000)	15 (240)	17 (272)	2000 (13.8)
Normal Weight	125 (2000) or more	13 (208)	15 (240)	1800 (12.4)

141

Structural Design Properties

Using $f'_m = 2,000$ psi coupled with several updates to the design provisions for masonry offers free design efficiency.

$$\frac{q}{f} = 1.0 - \frac{2.3A_{lc}}{d_b^2 s} \quad (\text{Equation 2-13})$$

Where : $\frac{2.3A_{lc}}{d_b^2 s} \leq 1.0$

A_{lc} is the area of the transverse bars at each end of the lap splice and shall not be taken greater than 0.35 in² (226 mm²).

(a) Grade 40 or Grade 50 reinforcement: 20,000 psi (137.9 MPa)

(b) Grade 60 reinforcement: 32,000 psi (220.7 MPa)

2.3.4.2.2 The compressive stress in masonry due to flexure or due to flexure in combination with axial load shall not exceed 0.45 f'_m provided that the calculated compressive stress due to the axial load component, f_a , does not exceed the allowable stress, F_a , in Section 2.2.3.1.

$$q_{ninf} = 105(f'_m)^{0.75} t_{inf}^2 \left(\frac{\alpha_{arch}}{l_{inf}^{2.5}} + \frac{\beta_{arch}}{h_{inf}^{2.5}} \right) \quad (\text{Equation B-5})$$

ncma.org

142

Structural Design Properties

Resulting impacts:

- 18 ft wall, 8 in. CMU
- 40 psf wind pressure
- 3,000 lb/ft axial

Table 2 – Design Impact of TMS 402/602 Revisions

Code Edition ¹	Reinforcement Size	Reinforcement Spacing
2009 IBC ²	No. 5	40 inches
2012 IBC ²	No. 5	48 inches
2015 IBC ³	No. 5	96 inches ⁴

¹The 2009, 2012, and 2015 editions of the IBC adopt the 2008, 2011, and 2013 editions of TMS 402/602, respectively.

² $f'_m = 1,500$ psi

³ $f'_m = 2,000$ psi

⁴Incorporating 9 gage bed joint reinforcement at 16 inches.

143

Questions?

144

Air, Water, and Vaport Barriers – What's Really Required?

ncma.org

145

Perception vs. Reality

Peeling the layers of building code requirements for layers...

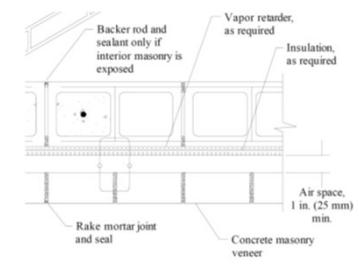


ncma.org

147

Focus: Building Envelope

Peeling the layers of building code requirements for layers...


ncma.org

146

Focus: Building Envelope

Components of the building envelope:

- Exterior Finish
- Water Control
- Thermal Control
- Air Control
- Vapor Control
- Structure
- Interior Finish

ncma.org

148

Focus: Building Envelope

Components of the building envelope:

- Exterior Finish
- Water Control
- Thermal Control
- Air Control
- Vapor Control
- Structure
- Interior Finish

The riddle:
Each system (masonry, wood, etc.) has different Code requirements.

ncma.org

149

Peeling the Envelope Layers

Components of the building envelope – Light Frame

- ✓ Exterior Finish
- ✓ Water Control
- ⚠ Thermal Control
- ⚠ Air Control
- ✓ Vapor Control
- ✓ Structure
- ✓ Interior Finish

ncma.org

151

Peeling the Envelope Layers

Components of the building envelope – Masonry

- ✗ Exterior Finish
- ✗ Water Control
- ⚠ Thermal Control
- ⚠ Air Control
- ✗ Vapor Control
- ✓ Structure
- ✗ Interior Finish

ncma.org

150

Peeling the Envelope Layers

Code doesn't treat all systems the same

Code required layers for CMU envelope:

- ✗ Exterior Finish
- ✗ Water Control
- ⚠ Thermal Control
- ⚠ Air Control
- ✗ Vapor Control
- ✓ Structure
- ✗ Interior Finish

Code required layers for wood envelope:

- ✓ Exterior Finish
- ✓ Water Control
- ⚠ Thermal Control
- ⚠ Air Control
- ✓ Vapor Control
- ✓ Structure
- ✓ Interior Finish

ncma.org

152

Barriers!

What's the difference?

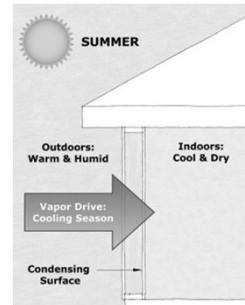
AIR BARRIER. Material(s) assembled and joined together to provide a barrier to air leakage through the building envelope. An air barrier may be a single material or a combination of materials.

VAPOR RETARDER CLASS. A measure of a material or assembly's ability to limit the amount of moisture that passes through that material or assembly. Vapor retarder class shall be defined using the desiccant method of ASTM E 96 as follows:

Class I: 0.1 perm or less.

Class II: $0.1 < \text{perm} \leq 1.0$ perm.

Class III: $1.0 < \text{perm} \leq 10$ perm.


ncma.org

153

WATER-RESISTIVE BARRIER. A material behind an exterior wall covering that is intended to resist liquid water that has penetrated behind the exterior covering from further intruding into the exterior wall assembly.

Barriers!

The issue with all vapor retarders.

ncma.org

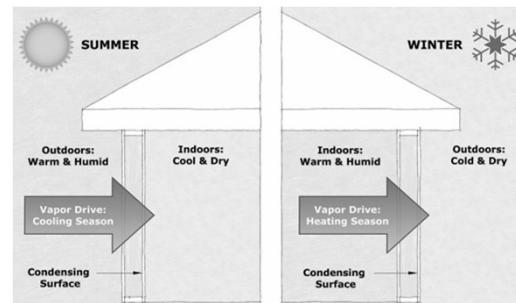
155

Barriers!

Vapor Retarders

Never required over CMU...usually required over wood/stud construction.

The IBC doesn't prohibit the use of vapor retarders with masonry (and may be needed in unique conditions...e.g., natatorium).


Unless you need a vapor retarder, lose it. It's just an added expense and is likely to cause more problems than it solves.

ncma.org

154

Barriers!

The issue with all vapor retarders.

ncma.org

156

Barriers!

Water-Resistive Barrier – Only required for masonry veneer over frame (wood/steel) construction. Not required for veneer over CMU backing.

Codes may not require a WRB...but that doesn't mean water penetration should be ignored.

- Use integral water repellents.
- Use surface sealers.
- Incorporate flashing (unless solid grouted).

ncma.org

157

Barriers!

The assembly may already have a complying air barrier integrated into it.

Complying Materials:

- Solid grouted CMU...or...1/2 inch gypsum.

Complying Assembly:

- CMU with one coat of block filler or two coats of paint...or... brick masonry veneer.

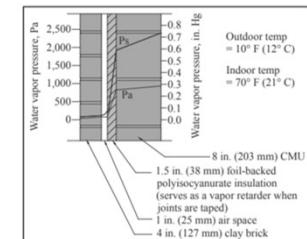
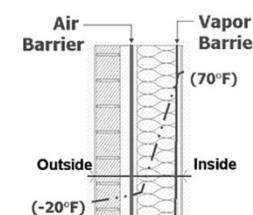
ncma.org

159

Barriers!

Air Barriers – Always required as part of a CMU assembly (with a few exceptions).

But check first!

ncma.org

158

Barriers!

These are not the same assembly...don't detail them the same.

ncma.org

160

Targeted Performance

Detail masonry assemblies to allow them to breathe.

ncma.org

161

When Layers Attack

Overall performance of the store was great, but was ~20 years old and in need of a face lift.

- New roof
- New paint (vapor permeable latex paint!)
- New HVAC
- Etc.

ncma.org

163

When Layers Attack

Adding too many barriers...or placing them in the wrong location...can have unintended consequences.

ncma.org

162

When Layers Attack

The result wasn't what they wanted...

164

When Layers Attack

The cause:

ncma.org

165

When Layers Attack

The cause:

- Although the paint they were using had a high perm rating, by applying multiple layers it had effectively become impermeable.
- The more efficient HVAC removed less moisture from the interior conditions space.

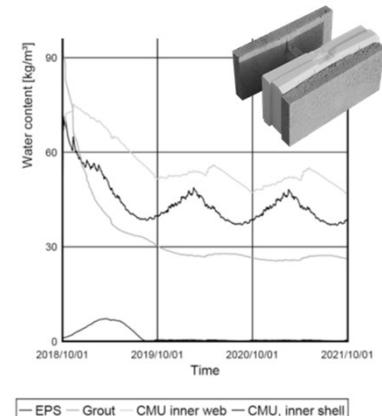
The interior moisture needed a place to go...

ncma.org

167

When Layers Attack

The cause:

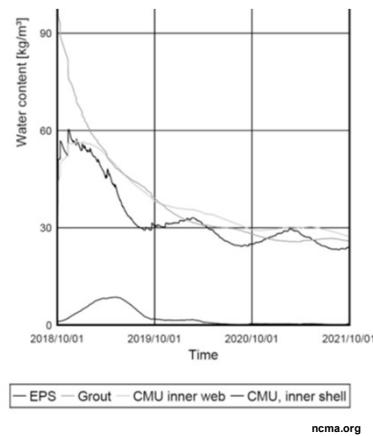

ncma.org

166

When Layers Attack

Hygrothermal Analyses

- Natatorium
- Climate Zone 5
- Single Wythe CMU
- Integrally Insulated
- Finish:
 - Interior and Exterior: None

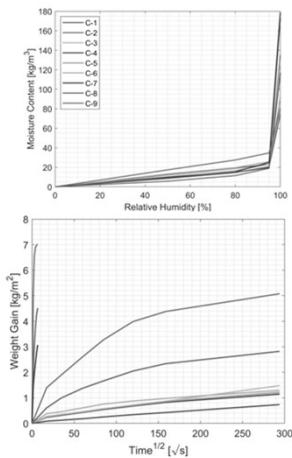

ncma.org

168

When Layers Attack

Hygrothermal Analyses

- Natatorium
- Climate Zone 5
- Single Wythe CMU
- Integrally Insulated
- Finish:
 - Exterior: None
 - Interior: Paint (7 Perm)

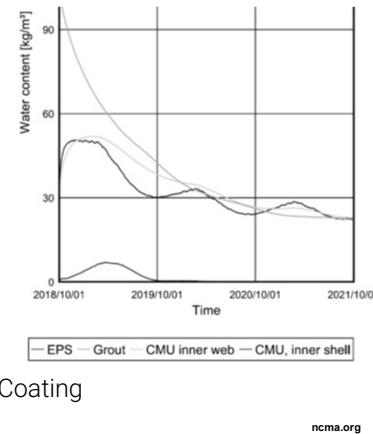


169

When Layers Attack

Hygrothermal Analyses

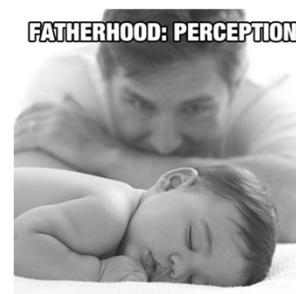
CMU can hold a lot of water, doesn't pick it up from ambient water vapor in the atmosphere.



171

When Layers Attack

Hygrothermal Analyses


- Natatorium
- Climate Zone 5
- Single Wythe CMU
- Integrally Insulated
- Finish:
 - Interior: Paint (7 Perm)
 - Exterior: Vapor Permeable Clear Coating

170

Perceptions vs. Reality

FATHERHOOD: PERCEPTION

ncma.org

172

Perceptions vs. Reality!

173

Questions?

174