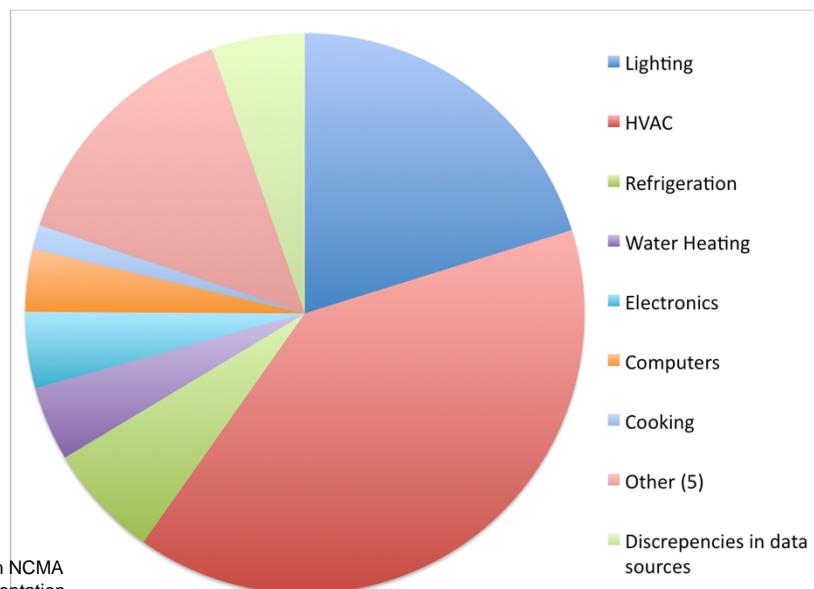


Masonry Walls and Energy Codes - Effective Compliance Methods Session 1

W. Mark McGinley, Ph. D., PE FASTM, FTMS

MASONRY SEMINAR
Masonry Institute of Hawaii
March 2020

Introduction

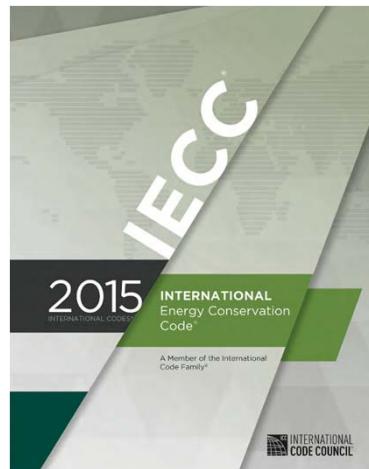

- The prescriptive energy code requirements for building envelopes have increased significantly over the past several years.
- Compliance with these code provisions is becoming increasingly more difficult, and new solutions are necessary.
- This presentation will provide an overview of energy code provisions and energy related analysis.

Introduction

- Look at thermal bridging, U and R values, and payback costs analysis for energy improvements using whole building analysis
- Throughout discuss resources available for designers, such as ACI/TMS 122.
- Summarize a series of energy studies conducted on mass masonry wall buildings in a variety of climates

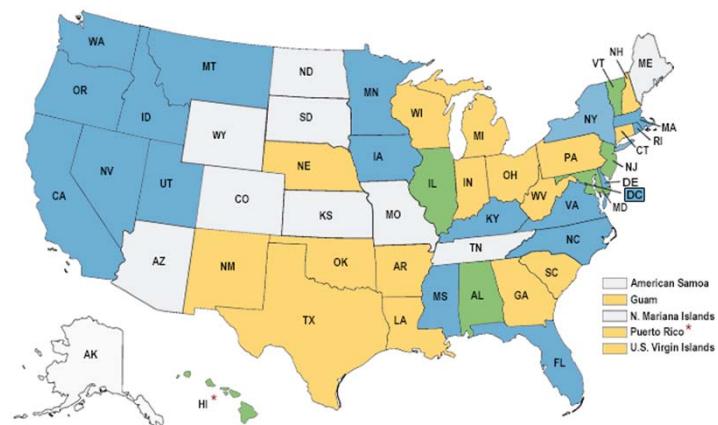
3

Commercial Building Energy Use


4

International Energy Conservation Code

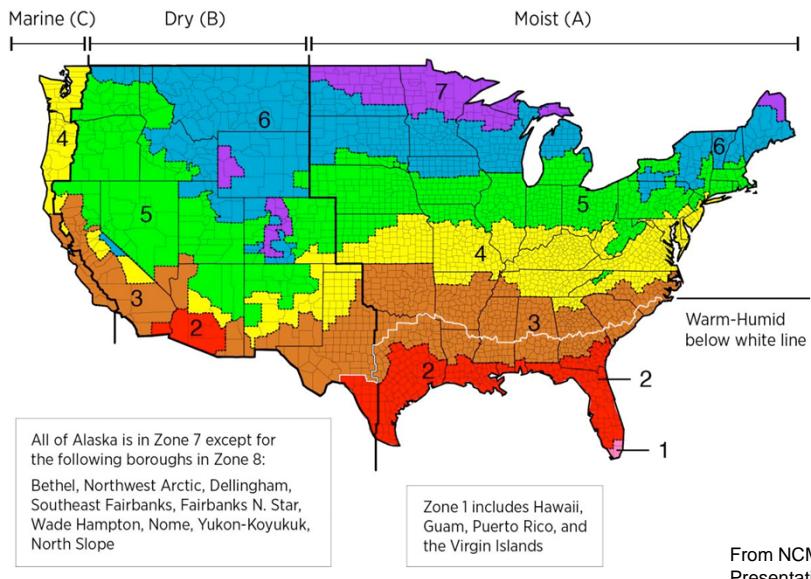
Energy codes continue to become more stringent...


- 2012 is about 15% more efficient than 2009
- 2015 is about 11% more efficient
- References ASHREA 90.1 as an alternative – similar provisions

From NCMA Presentation

5

International Energy Conservation Code (IECC)



From NCMA Presentation

- | | | |
|--|---|---|
| 6 ASHRAE 90.1-2013/2015 IECC, equivalent, or more energy efficient | 19 ASHRAE 90.1 - 2010/2012 IECC, equivalent, or more energy efficient | 19 ASHRAE 90.1 - 2007/2009 IECC, equivalent, or more energy efficient |
| 12 Older or less energy efficient than ASHRAE 90.1 - 2007/2009 IECC, or no statewide code. | | |

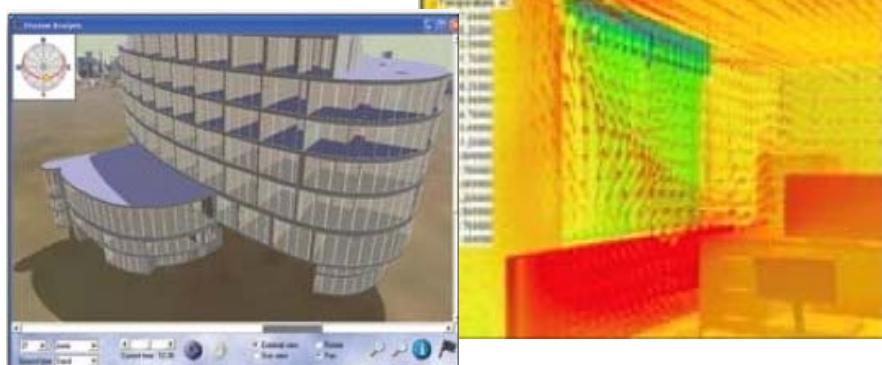
6

Climate Zones

Compliance Options - IECC

Prescriptive → R-value table
Prescriptive → U-factor table

Trade-off → COMcheck
Envelope


Total building performance → EnergyPlus/Design
Builder, Sefaira, TREAT, BSim, etc.

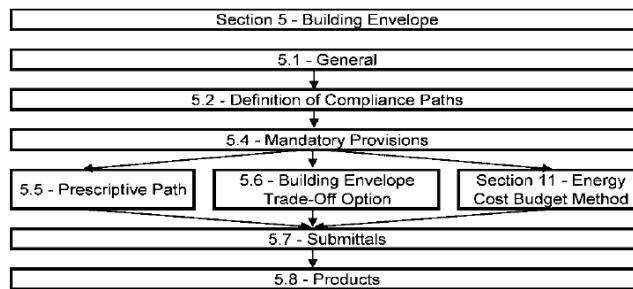
From NCMA
Presentation

8

Total Building Performance

Tools include: EnergyPlus/DesignBuilder, Sefaira, TREAT, BSim

From NCMA
Presentation


www.buildingenergystandardstools.com

9

Energy Code Design ASHREA 90.1

STD. generally allows 3 methods to be used for design of the various energy related building systems (IECC – references -ASHRAE 90.1) **Similar in other Systems**

5. BUILDING ENVELOPE

10

Energy Code Design

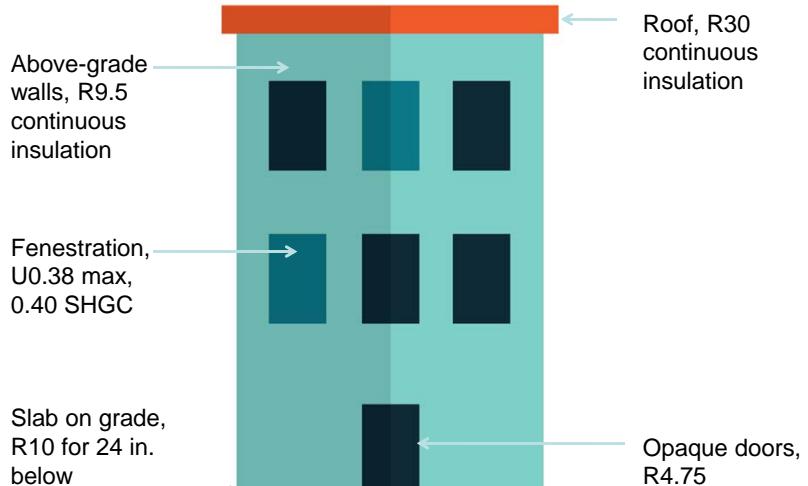
Prescriptive requirements – Envelope – Varies with Climate Zone

TABLE 5.5-4 Building Envelope Requirements for Climate Zone 4 (A, B, C)*							Climate Zone 4 B
Opaque Elements	Nonresidential		Residential		Semiheated		
	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	
<i>Roofs</i>							
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.173	R-5.0 c.i.	
Metal Building ^a	U-0.055	R-13.0 + R-13.0	U-0.055	R-13.0 + R-13.0	U-0.097	R-10.0	
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.053	R-19.0	
<i>Walls, Above-Grade</i>							
Mass	U-0.104	R-9.5 c.i.	U-0.090	R-11.4 c.i.	U-0.580	NR	
Metal Building	U-0.084	R-19.0	U-0.084	R-19.0	U-0.113	R-13.0	
Steel-Framed	U-0.064	R-13.0 + R-7.5 c.i.	U-0.064	R-13.0 + R-7.5 c.i.	U-0.124	R-13.0	
Wood-Framed and Other	U-0.089	R-13.0	U-0.064	R-13.0 + R-3.8 c.i.	U-0.089	R-13.0	
<i>Walls, Below-Grade</i>							
<i>Walls, Above-Grade</i>							
Mass					U-0.104	R-9.5 c.i.	
Steel-Joist							
Wood-Framed an							
<i>Floors</i>							
Slab-On-Grade Floors							
Unheated	F-0.730	NR	F-0.540	R-10 for 24 in.	F-0.730	NR	
Heated	F-0.860	R-15 for 24 in.	F-0.860	R-15 for 24 in.	F-1.020	R-7.5 for 12 in.	
<i>Opaque Doors</i>							
Swinging	U-0.700		U-0.700		U-0.700		
Nonswinging	U-0.500		U-0.500		U-1.450		
<i>Penetration</i>							
Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC		
<i>Vertical Glazing, 0%–40% of Wall</i>							
Nonmetal framing (all) ^c	U-0.40		U-0.40		U-1.20		
Metal framing (curtainwall storefront) ^d	U-0.50	SHGC-0.40 all	U-0.50	SHGC-0.40 all	U-1.20	SHGC-NR all	
Metal framing (entrance door) ^d	U-0.85		U-0.85		U-1.20		
Metal framing (all other) ^d	U-0.55		U-0.55		U-1.20		

11

Terminology

R-value: describes how well a material insulates under steady state temperature conditions; $R = 1/U$

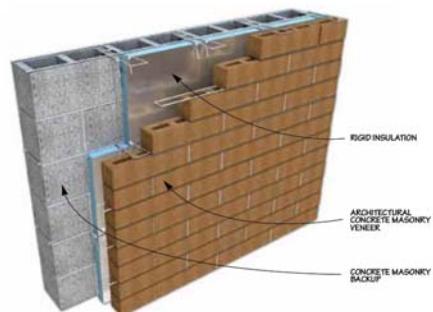

U-factor: describes how well a material conducts heat under steady state temperature conditions; $U = 1/R$

Heat capacity (HC): describes how well a material stores and releases heat under transient temperature conditions (thermal mass)

From NCMA
Presentation

12

Prescriptive Compliance Example Zone 4 – Envelope – R values

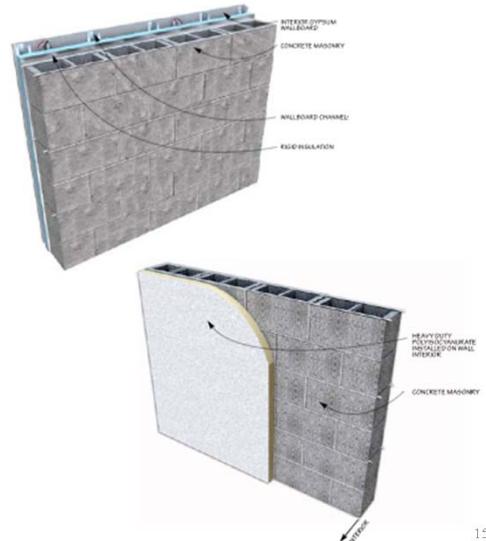

From NCMA
Presentation

13

Prescriptive R-Value Compliance

Masonry cavity wall:

- cavity width can be varied to accommodate insulation
- R-values largely independent of grout schedule
- exposed masonry provides maximum durability

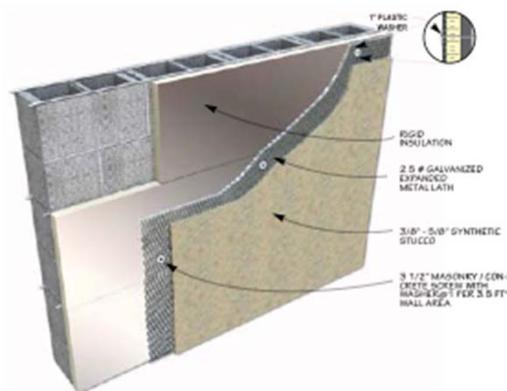

From NCMA
Presentation

14

Prescriptive R-Value Compliance

Continuous interior insulation:

- R-values independent of grout schedule
- allows exterior exposed masonry
- furring space can be used for wiring and utilities



15

Prescriptive R-Value Compliance

Continuous exterior insulation:

- R-values independent of grout schedule
- allows interior exposed masonry, maximizing thermal mass benefits

16

Prescriptive R-Value Compliance Internal insulation

CLIMATE ZONE	1		2		3	
	All other	Group R	All other	Group R	All other	Group R
Insulation entirely above roof deck	R-20ci	R-25ci	R-25ci	R-25ci	R-25ci	R-25ci
Metal buildings ^b	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS
Attic and other	R-38	R-38	R-38	R-38	R-38	R-38
Mass	R-5.7ci ^c	R-5.7ci ^c	R-5.7ci ^c	R-7.6ci	R-7.6ci	R-9.5ci
Metal building	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci

From NCMA
Presentation

^c R-5.7ci is allowed to be substituted with concrete block walls complying with ASTM C90, ungrouted or partially grouted at 32 inches or less on center vertically and 48 inches or less on center horizontally, with ungrouted cores filled with materials having a maximum thermal conductivity of 0.44 Btu-in/h-f² °F.

17

WHAT IF MY BUILDING DOESN'T MEET PRESCRIPTIVE INSULATION R- VALUES?

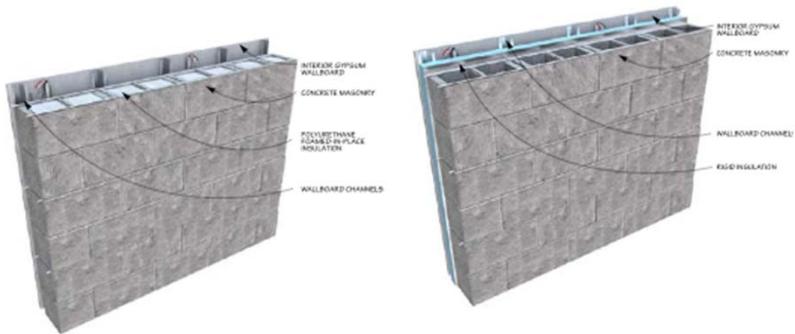
Prescriptive U-Factor Compliance

Note this is assembly U

Walls, Above-Grade

Mass

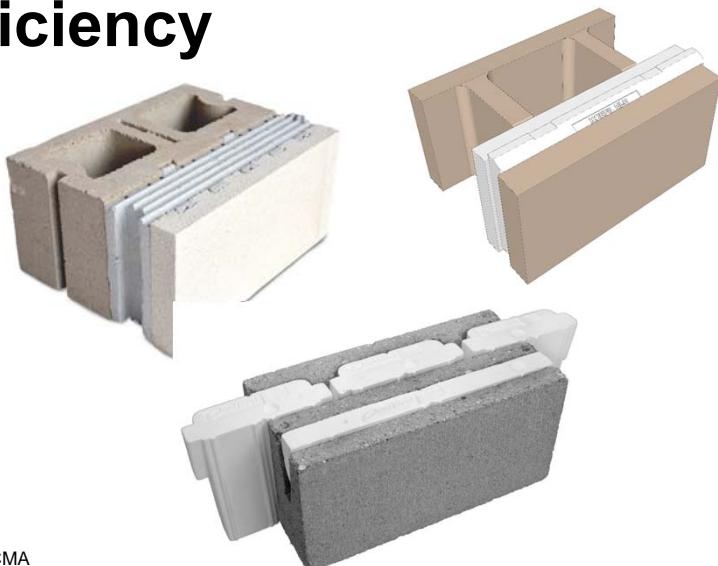
R-9.5 c.i.


ASHRAE Provisions

IECC – Has a Separate U value
table – Assembly U

18

Prescriptive U-Factor Compliance


Makes sense any time the preferred wall meets the prescriptive U-factor requirement.

From NCMA
Presentation

19

CMU Products for Energy Efficiency

From NCMA
Presentation

20

Where Do I Find Masonry U-Factors? NCMA WEB SITE CHANGING – No Spread sheet

21

Where Do I Find Masonry U-Factors?

SECTION TWO 2-WEB CMU ASSEMBLIES

- Masonry exposed on both the interior and exterior provides maximum durability.
- Values in table assume no insulation in grouted cells. Note that some rigid inserts are configured to accommodate insulation, reinforcing steel and grout in the same cell, which can improve R-values.
- Other masonry cell insulations include molded polystyrene inserts, other types of foamed-in-place insulations and expanded perlite or vermiculite granular fills. These insulations will have different thermal properties than polyurethane which will affect the resulting R-value.
- Cell insulation, in contrast to additional insulation on either side of the wall, allows some of the thermal mass (masonry) to be in direct contact with the indoor air, providing excellent thermal mass benefits.
- Insulation should occupy all ungrouted cells.
- "Lightly reinforced" = grout 8 ft o.c. both vertically and horizontally (or vertical reinforcement only at 48 in. o.c.). "Heavily reinforced" = grout 32 in. o.c. vertically and 48 in. o.c. horizontally (or vertical reinforcement only at 24 in. o.c.).

From NCMA
Presentation

22

Where Do I Find Masonry U-Factors?

Use to have a Spread sheet that allowed Parallel and series analysis

Sustainable Concrete Products for Structures and Landscapes

NCMA R-Value / U-Factor / Heat Capacity Calculator

User Input Page (3 Layer Unit)

Please enter inputs below for the wall assembly

Step 2: CMU Description

Description:

NOTE: Enter description of CMU to be included in calculation output

Step 3: CMU Nominal Dimensions

Specified

Width (in.)

Height (in.)

Length (in.)

Step 4: Face Shell Thickness

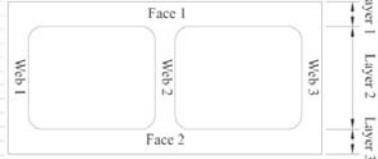
Face 1 Thickness (in.)

Face 2 Thickness (in.)

Step 5: Web Information

Web 1 Thickness (in.)

Web 2 Thickness (in.)


Web 3 Thickness (in.)

Web 4 Thickness (in.)

- Option - enter total web area for CMU

NOTE - Entering a total web area above will override individual web entries.

3 Layer Unit

Layer 1
Layer 2
Layer 3

Step 11 & 12: Surface Finishes

Inside Surface Finish

None

Outside Surface Finish

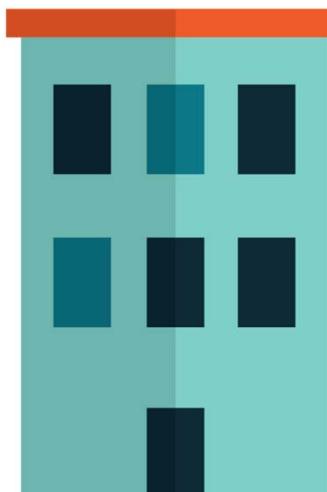
None

New – Changes to ASTM C 90 allow 2 web
Blocks – will reduce block U

From NCMA
Presentation

23

Second Compliance Method


Trade-Off Compliance/COMcheck

Three overall budgets:

Envelope

Mechanical

Lighting

From NCMA
Presentation

24

COMcheck

www.energycodes.gov/comcheck

COMcheck™ Software

Windows Mac COMcheck-Web Technical Support

COMcheck™ for Windows®

Version 4.0.2 (Build Version: 4.0.2.8)

Runs on Vista or Windows 7 in either single, multi-user, or network environments

[Download COMcheck Now!](#)

Supported Codes:

2009, 2012 and 2015 IECC.

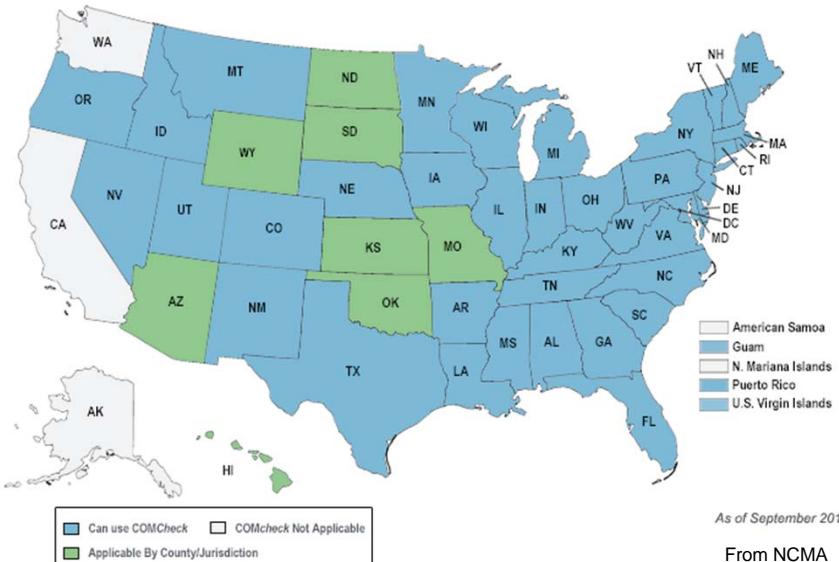
ASHRAE Standard 90.1:2007, 2010, and 2013

Various state-developed energy codes.

Version 4.0.2 includes support for the 2015 IECC energy code. This release also includes support for '2014 Florida Building Code, Energy Conservation'. 2006 IECC and 2011 Vermont Commercial Building Energy Standard are no longer supported by COMcheck.

From NCMA
Presentation

25


COMcheck

- easy way to take advantage of trade-offs, ie, increase roof insulation to reduce wall or window requirements.
- program shows if the envelope complies, and how close it is to compliance
- allows individual elements to be tweaked for compliance, revisions are quick and easy.
- **Trade offs are for envelope only**

From NCMA
Presentation

26

Where Can I Use

27

COMcheck Input

COMcheck-Web – 2015 IECC

https://energycode.pvt.gov/COMcheckWeb/index.html

Big Box Retail

2015 IECC

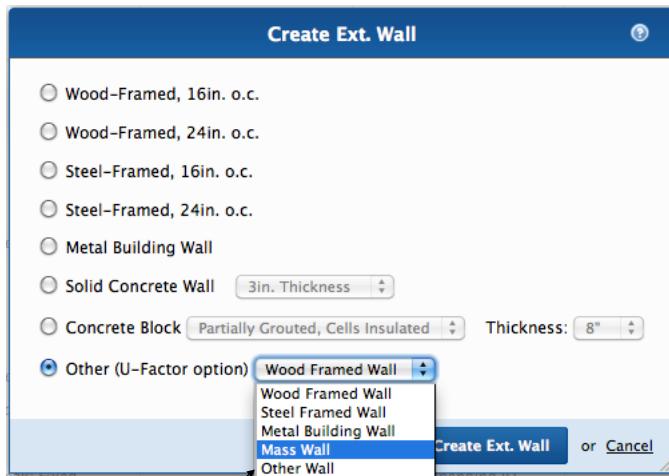
My Projects | Preferences | Log Out

Project | Envelope | INT. LIGHTING | EXT. LIGHTING | MECHANICAL | REQUIREMENTS | Options | Reports | Help

New Project | Duplicate | Move Up | Move Down | Delete

Add: Roof | Skylight | Ext. Wall | Window | Door | Basement | Floor

Registration Requirements


Component	Assembly	Building Area Type	Fenestration Details	Construction Details	Gross Area or Slab Perimeter	Cavity Insulation R-Value	Continuous Insulation R-Value	U-Factor	Heat Capacity	UA	SHGC	Projection Factor
1. Roof	Insulation Entirely Above Deck	2 - Retail (N)			134131 ft ²		30	0.032		4292		
2. Roof	Insulation Entirely Above Deck	1 - Office (N)			4188 ft ²		30	0.032		134		
3. Ext. Wall	Other Mass Wall	2 - Retail (N)			32887 ft ²			0.1	9	3114		
4. Door	Insulated Metal			Swinging (4)	378 ft ²			0.61		231		
5. Door	Insulated Metal			Non-Swinging (2)	162 ft ²			0.21		34		
6. Door	Uninsulated Double-Layer Metal			Non-Swinging (2)	320 ft ²			0.21		67		
7. Window	Metal Frame with Thermal Break: Fixed		Non-NFRC p...		207 ft ²			0.37		77	0.25	1.45
8. Window	Metal Frame with Thermal Break: Fixed		Non-NFRC p...		532 ft ²			0.37		197	0.25	0
9. Window	Metal Frame with Thermal Break: Fixed		Non-NFRC p...		152 ft ²			0.37		56	0.25	1.45
10. Ext. Wall	Other Mass Wall	1 - Office (N)			5243 ft ²			0.1	9	524		
11. Floor	Unheated Slab-On-Grade	2 - Retail (N)		Vert. Ins., 2 ft	1611 ft		10			870		

Envelope Passes +2% | Interior Lighting TBD | Exterior Lighting TBD

From NCMA Presentation

28

COMcheck Input

**Always use Other (mass) exterior wall input
Default value for CMU very conservative.**

From NCMA
Presentation

29

COMcheck Input – Other Mass Wall

Assembly	Oriente	Continuous Insulation R-Value	U-Factor	Heat Capacity
Other Mass Wall	North		0.091	9

Thermal Catalog
NCMA TEKs 6-1C & 6-2C
R-Value/U-Factor
Calculator

NCMA TEK 6-16A

Also ACI 122R Guide to Thermal
Properties of Concrete and
Masonry Systems

From NCMA
Presentation

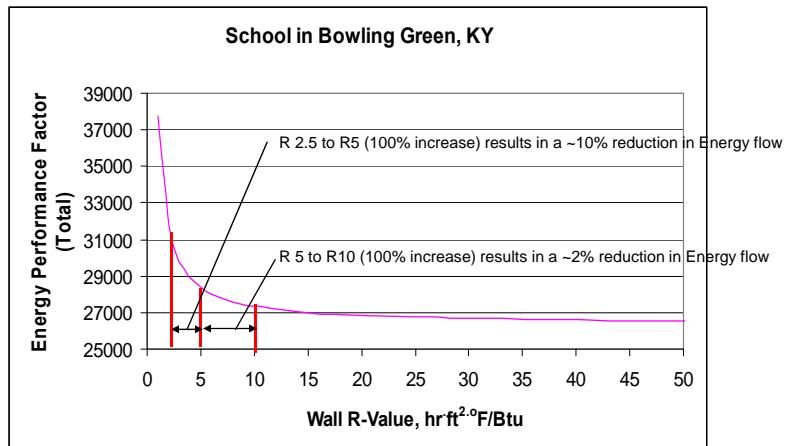
30

COMcheck Results

- Using COMCheck allows slightly higher U-factor for mass wall than prescriptive
- Using trade-offs can change required efficiency for walls (or other components)

Method	Mass wall requirement
Prescriptive R-value	R9.5 ci
Prescriptive U-factor	U-0.104 (R9.6)
COMcheck code max U	U-0.109 (R9.2)
Trade-off: max roof R (R60)	U-0.164 (R6.1)

From NCMA
Presentation


31

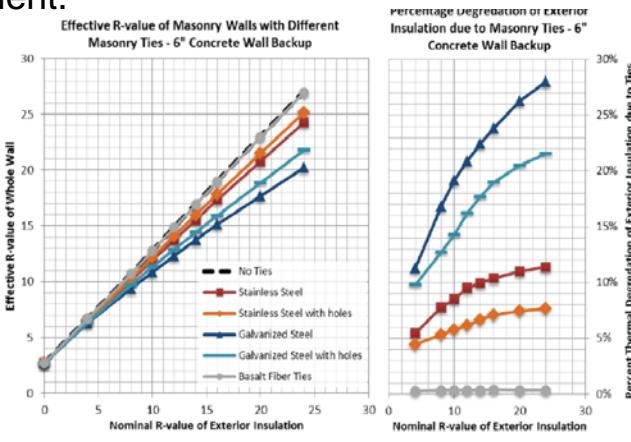
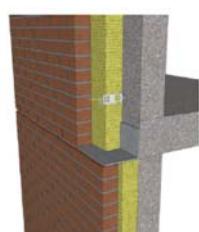
COMcheck

- If close to prescriptive can help
- But prescriptive R/U values close to max effective values.
- Large increases in R have less impact at higher R values
- See following slide

32

Envelope Performance Factor (EPF) is a relative term that approximates the total heating and cooling energy flow associated with an average square foot of surface or square meter of building envelope

COMCheck accounts for this effect so adding a lot of R on roof only minimally effective if on flat part of curve

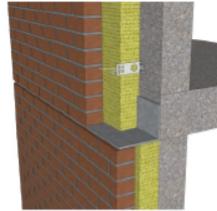


33

Thermal Bridging

Thermal bridging can have a significant effect on Thermal resistance of the envelope – Thus the C_i or U requirement.

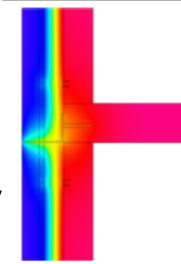
**Ties(anchors)
angles can
reduce steady
state thermal
resistance
significantly**

16" x 24"


THERMAL BRIDGING OF MASONRY VENEER CLADDINGS AND ENERGY CODE COMPLIANCE, 12th Canadian Masonry Symposium
Vancouver, British Columbia, June 2-5, 2013
Michael Wilson¹, Graham Finch² and James Higgins³

34

Thermal Bridging


Thermal bridging can have a significant effect on Thermal resistance of the envelope – Thus the Ci requirement.

Poured Concrete Backup

Shelf angles can reduce steady state thermal resistance significantly

~40% reduction - SS but may not be this high dynamically

MASONRY VENEER SUPPORT DETAILS: THERMAL BRIDGING, 12th Canadian Masonry Symposium
Vancouver, British Columbia, June 2-5, 2013
Michael Wilson¹, Graham Finch² and James Higgins³

R-16.8 (RSI 2.95)
U-0.060 (USI 0.339)

R-10.5 (RSI 1.84)
U-0.096 (USI 0.543)

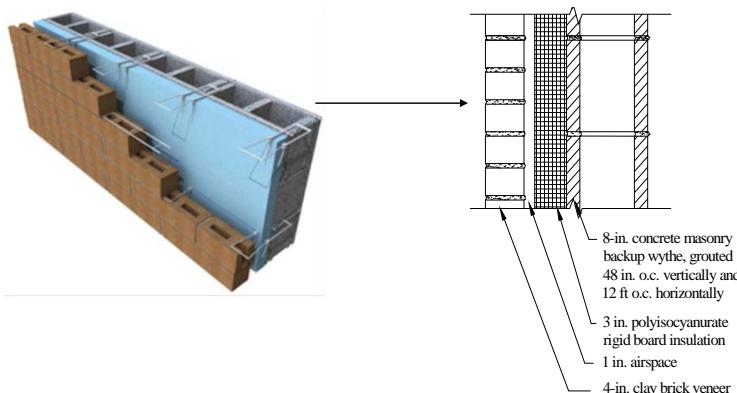
35

BEST WAY TO EVALUATE THESE EFFECTS IS TO USE HOLISTIC ENERGY ANALYSIS – ENERGYPLUS, DOE 2.

- Basis of 3rd compliance method, Energy Budget method – Proposed building must have \leq Energy cost to prescriptive methods – Also new Appendix G method index.
- Better accounts of thermal mass effects – dynamic weather and internal loads, etc.

36

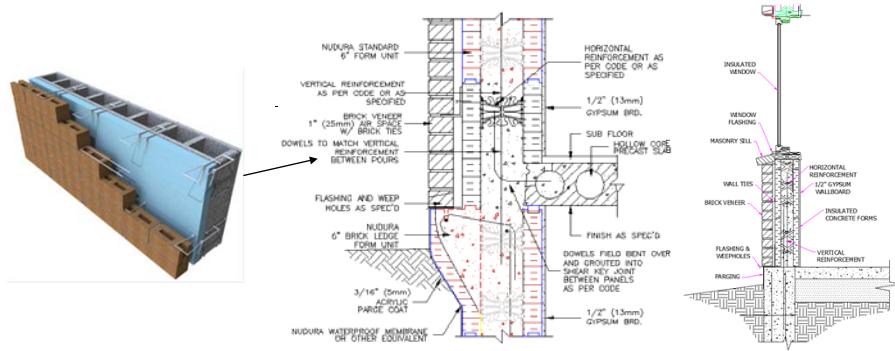
Designed a Base Prototype Middle School to Meet prescriptive provisions -4B


- Most Lights T 12- 2 and 4 lamp systems
- High bay halides
- HVAC VAV - Gas boilers and Chillers
- Typical school use schedules.
- Minimum Envelope U and R values ~ R 26 Roof, ~R 9.8 Walls
- Base EUI - ~132

www.schoolclearinghouse.org ~158,000 ft² 2 Story- Prototype

37

Evaluated Select Alternatives (ECM's): •Variety of Building Envelopes - Walls & roofs

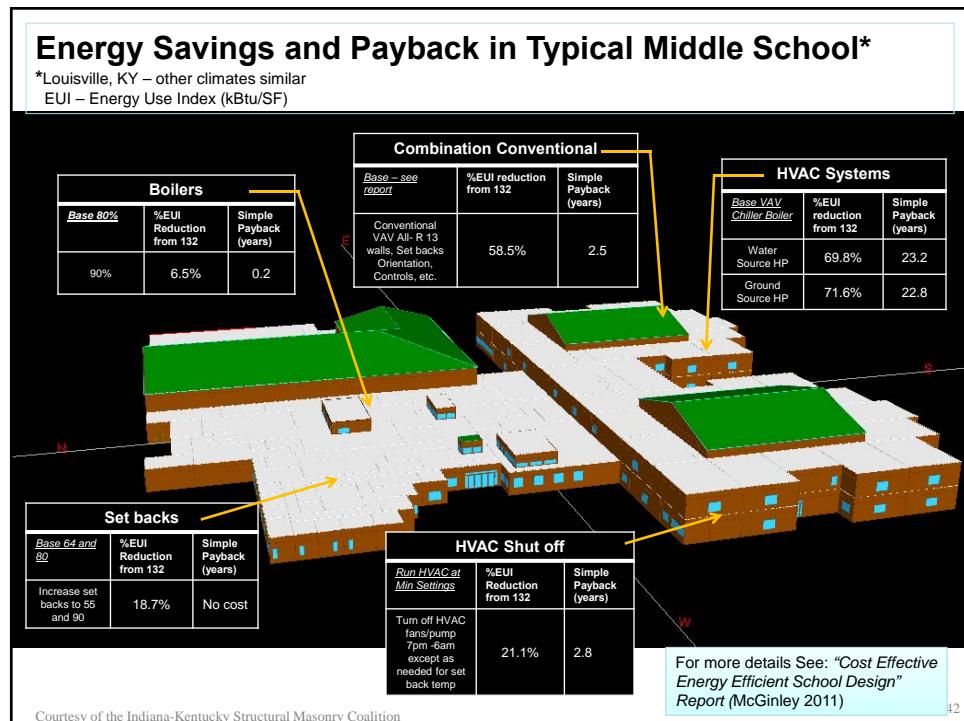
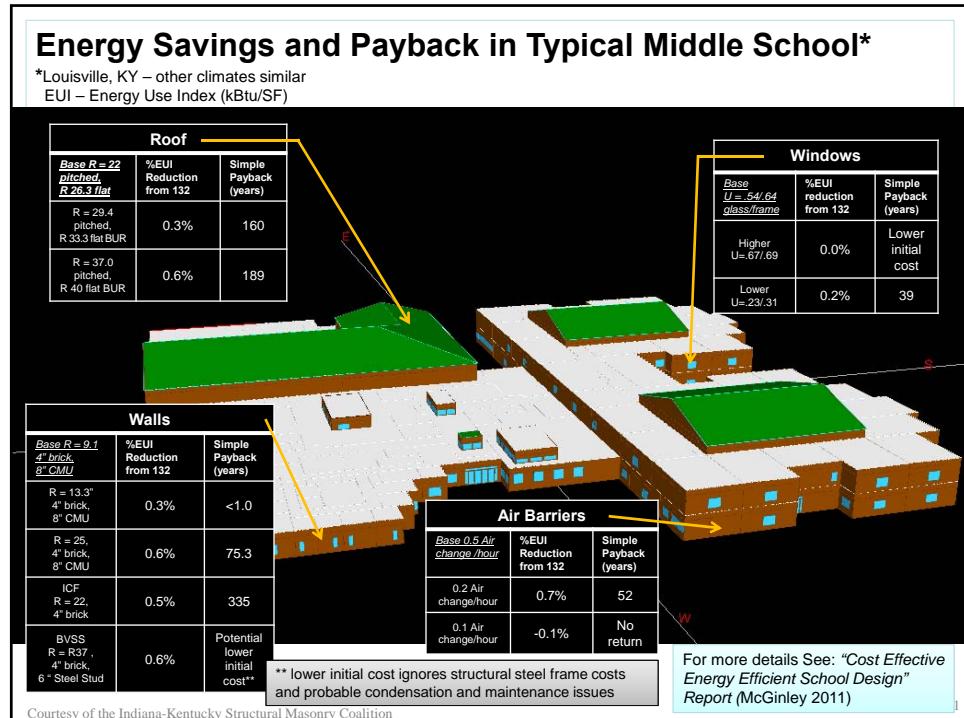


Vary the exterior masonry cavity wall insulation: 1 1/4" thick polystyrene, 1 1/2" thick polystyrene, 2" thick polyisocyanurate foam board, 3" polyisocyanurate foam board. **Over 100% swing in insulation values.**

38

Evaluated Select Alternatives (ECM's):

- Variety of Building Envelopes - Walls

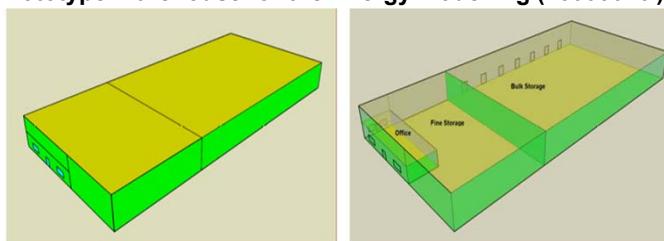
Exterior CMU wall structure to an insulated concrete form (ICF) wall system; 4" face brick, air space, 1 1/2" polyurethane, 6" 140lb concrete, 1 1/2" polyurethane, and 1/2" gypsum board.

39

Investigated Energy Conservation Measures

- Each of the Mature alternative energy conservation measures (ECM's) technologies were incorporated into the building.
- Prototype building was re-analyzed using eQuest (DOE2) for each ECM singly and in groups - 5 KY cities. Holistic analysis **- Energy Budget Method**
- Conducted an economic differential cost analysis – Pay back and Self-funding

ALTERNATIVE ENERGY DESIGNS IN SINGLE WYTHE MASONRY BUILDINGS

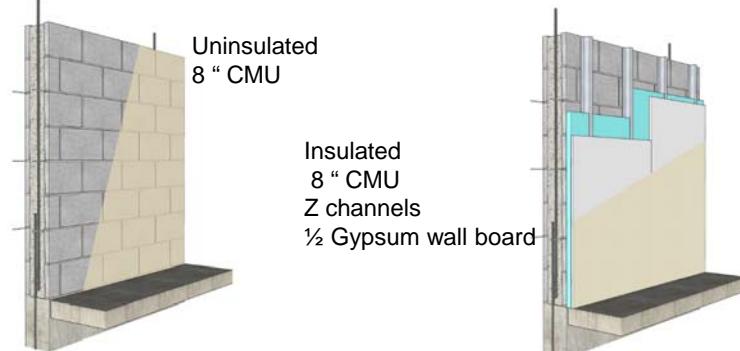

- U of L looked at design alternatives to the simple prescriptive solutions offered by the energy code for three building archetypes that are typically constructed with single wythe masonry exterior wall systems.
- For each archetype, various code-compliant [ASHRAE 90.1 2010, NECB 2011] alternative construction configurations were examined for energy efficiencies, energy costs and construction costs (for various climate zones).
- Also conducted a differential capital cost and payback analysis
- Also looked at Canadian Code

43

Archetype 1 – Warehouse - US

One of 16 reference buildings used for the evaluation of energy analysis software by the Department of Energy and developed to be representative of over 80% of typical warehouse configurations [Deru, et-al 2011], [NREL 2013].

Prototype Warehouse for the Energy Modelling (~50000 ft²)

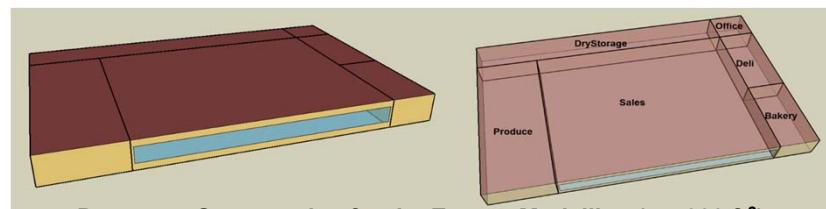


Evaluated Climate Zones and cities.

City	State	Climate Zone	City	State	Climate Zone
Atlanta	Georgia	3A	Chicago	Illinois	5A
Las Vegas	Nevada	3B	Boulder	Colorado	5B
San Francisco	California	3C	Minneapolis	Minnesota	6A
Baltimore	Maryland	4A	Helena	Montana	6B
Albuquerque	New Mexico	4B	Duluth	Minnesota	7
Seattle	Washington	4C			

44

Prototype Warehouse BASELINE DESIGNS - US
Configured to Code Prescriptive levels and Analyzed
using the Energyplus program for cities in Table 1 as
required in the Energy Budget Code Compliance method

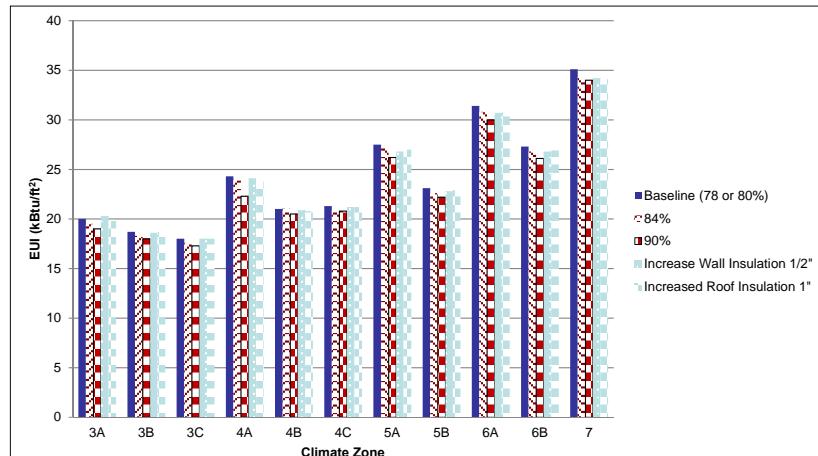

(Infiltration rate of 0.038 cfm/ft²)

Some climate zones required the exterior walls of the bulk storage to be insulated, some did not. The office and fine storage areas were insulated with varying R values

45

Archetype 2 &3 Supermarket & Box Retail-US

One of 16 reference buildings used for the evaluation of energy analysis software by the Department of Energy [Deru, et-al 2011], [NREL 2013].


Prototype Supermarket for the Energy Modelling (~45000 ft²)

Prototype Box Retail for the Energy Modelling (~45000 ft²)

46

Warehouse Sensitivity Analysis- US

Energy Use Intensities: Wall and Roof Insulation vs. Heating Efficiency
Less effect of insulation more effect of HVAC efficiency

47

Warehouse Sensitivity Analysis- US

8" CMU wall, partially grouted and reinforced at 48 inches OC -all other cores filled with foam insulation

By NCMA TEK Note 6B [14] U- and R-values = 0.287 Btu/ft²-h-°F and 3.48 ft²-h-°F/Btu

This is a significant decrease in thermal transmittance when compared to the bare masonry wall (with U-value of 0.580 Btu/ft²-h-°F-partially grouted).

(8" CMU wall having a continuous insulation of R-7.2 ft²-h-°F/ Btu (U-value of 0.125 Btu/ft²-h-°F)).

48

Warehouse Sensitivity Analysis- US

49

Alternative Designs US Code Compliance - Warehouse

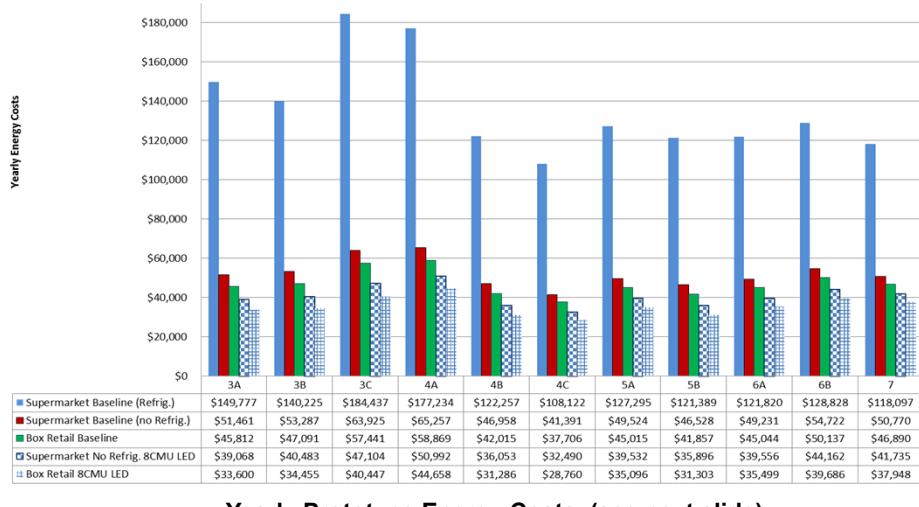



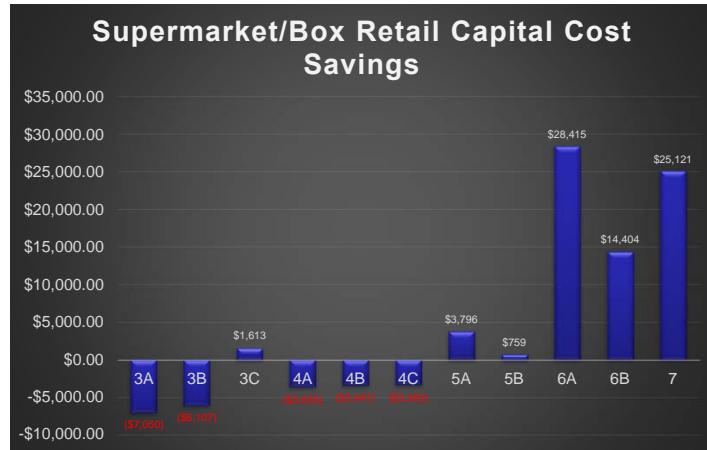
Figure: Yearly Prototype Warehouse Energy Costs. (based on State Averages)

50

Alternative Designs US Code Compliance- Supermarket-Box Retail

51

Alternative Designs US Differential Construction Cost



8"CMU Foam core Walls, Lower Ballast Factors
For 4B and above - +2" Roof insulation
For 7 - Occupancy Sensors

52

Alternative Designs US Differential Construction Cost

**Construction Cost Savings of Alternative Designs Box Retail
and Supermarkets – 8" CMU Foamed wall and LED Lights**

53

Conclusions

- Prescriptive Methods can be used but assembly U values may be the best way to achieve this especially with 8" or 12" CMU and foamed cores, or two web blocks.
- COM check – Envelope trade offs can work where your designs are close to prescriptive code configurations. Use OTHER Walls.
- Energy Budget method showed significant potential energy savings of over 50% for typical prescriptive configurations. Better lighting, HVAC systems and aggressive control strategies - paybacks < 3 years.

54

Conclusions

- Envelope improvements beyond code minimums have little effect on yearly energy consumption.
- Thermal Bridging may have minimal effect on energy consumption and may be compensated with a little additional insulation.

55

Masonry Walls and Energy Codes – Alternative Energy Code Compliant Designs for Single Wythe Masonry Structures in Hawaii

56

Introduction

- The recent Hawaiian adoption of IECC 2015 complicated cost effective energy efficient design in this state by now prescriptively requiring continuous insulation for exterior masonry walls. – Residential & Non. (solid grouting)

57

Introduction

- Discuss two phase investigation of energy efficient design of typical structures that use exterior masonry and concrete walls.
- Phase 1 – Looked at prescriptive approach, R , U and Com Check Trade off approaches
- Phase 2 - looked at whole building energy analysis and alternative approaches.

58

IECC Prescriptive R table

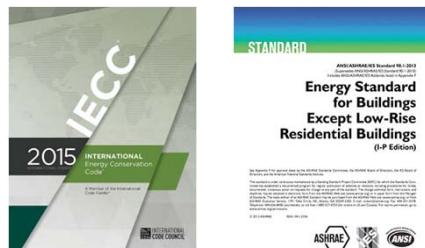
TABLE C402.1.4
OPAQUE THERMAL ENVELOPE ASSEMBLY MAXIMUM REQUIREMENTS, U-FACTOR METHOD^{a, b}

CLIMATE ZONE	1		2		3		4 EXCEPT MARINE		5 AND MARINE 4		6		7		8	
	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
Roots																
Insulation entirely above roof deck	U-0.048	U-0.039	U-0.039	U-0.039	U-0.039	U-0.039	U-0.032	U-0.032	U-0.032	U-0.032	U-0.032	U-0.028	U-0.028	U-0.028	U-0.028	U-0.028
Metal buildings	U-0.044	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.029	U-0.029	U-0.029	U-0.029	U-0.029
Attic and other	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021
Walls, above grade																
Mass	U-0.151	U-0.151	U-0.151	U-0.123	U-0.123	U-0.104	U-0.104	U-0.090	U-0.090	U-0.080	U-0.080	U-0.071	U-0.071	U-0.061	U-0.061	U-0.061
Metal building	U-0.079	U-0.079	U-0.079	U-0.079	U-0.079	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.039	U-0.052	U-0.039
Metal framed	U-0.077	U-0.077	U-0.077	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.057	U-0.064	U-0.052	U-0.045	U-0.045
Wood framed and other c	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.051	U-0.051	U-0.051	U-0.036	U-0.036	U-0.036
Walls, below grade																
Below-grade wall ^c	C-1.140 ^e	C-0.119	C-0.119	C-0.119	C-0.119	C-0.119	C-0.092	C-0.092	C-0.092	C-0.092	C-0.092					
Floors																
Mass ^d	U-0.322 ^e	U-0.322 ^e	U-0.107	U-0.087	U-0.076	U-0.076	U-0.076	U-0.076	U-0.074	U-0.074	U-0.064	U-0.064	U-0.057	U-0.055	U-0.051	U-0.055
Joist/framing	U-0.066 ^e	U-0.066 ^e	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033
Slab-on-grade floors																
Unheated slabs	F-0.73 ^e	F-0.54	F-0.54	F-0.54	F-0.54	F-0.54	F-0.52	F-0.40	F-0.40	F-0.40	F-0.40					
Heated slabs ^f	F-0.70	F-0.70	F-0.70	F-0.70	F-0.70	F-0.70	F-0.65	F-0.65	F-0.65	F-0.65	F-0.58	F-0.58	F-0.55	F-0.55	F-0.55	F-0.55
Opaque doors																
Swinging	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37

59

International Energy Conservation Code

IECC Section C 402 - prescriptive R requirements for building envelopes.


Zone 1 minimum thermal resistance (R) values - mass walls above grade (typical masonry walls) - minimum continuous insulation R= 5.7 °F. ft².hr/BTU. IECC Section C402.2.3 indicates that any integral insulation of CMU block cannot be used to meet this continuous R requirement.

Footnote c in this table indicates that partially grouted (32" O.C.) ASTM C 90 block walls do not need continuous insulation if the ungrouted cells of the block are filled with materials having a maximum thermal conductivity of 0.44 Btu-in/h-f² °F.

60

International Energy Conservation Code

IECC Allows use of ASHREA 90.1 Instead of IECC

“C401.2 Application. Commercial buildings shall comply with one of the following:

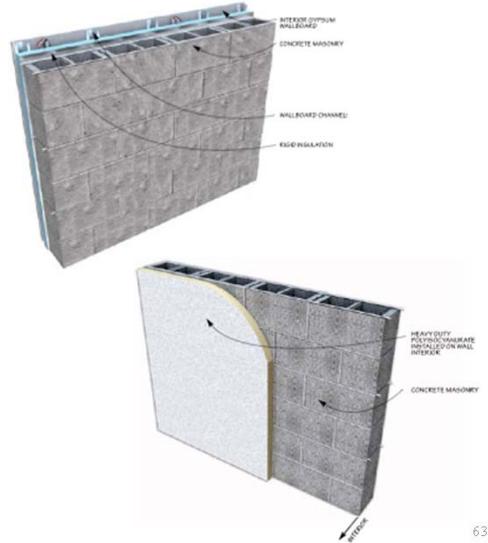
1. The requirements of ANSI/ASHRAE/IESNA 90.1.
2. The requirements of Sections C402 through C405. In addition, commercial buildings shall comply with Section C406 and tenant spaces shall comply with Section C406.1.1.
3. The requirements of Sections C402.5, C403.2, C404, C405.2, C405.3, C405.4, C405.6 and C407. The building energy cost shall be equal to or less than 85 percent of the standard reference design building.”

61

ASHREA 90.1 Prescriptive R table

Table 5.5-1 Building Envelope Requirements for Climate Zone 1 (A,B,C)*

Opaque Elements	Nonresidential		Residential		Semihot	
	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value
<i>Roofs</i>						
Insulation Entirely above Deck	U-0.048	R-20 c.i.	U-0.039	R-25 c.i.	U-0.218	R-3.8 c.i.
Metal Building ^a	U-0.041	R-10 + R-19 FC	U-0.041	R-10 + R-19 FC	U-0.115	R-10
Attic and Other	U-0.027	R-38	U-0.027	R-38	U-0.081	R-13
<i>Walls, above Grade</i>						
Mass	U-0.580	NR	U-0.151 ^b	R-5.7 c.i. ^b	U-0.580	NR
Metal Building	U-0.094	R-0 + R-9.8 c.i.	U-0.094	R-0 + R-9.8 c.i.	U-0.352	NR
Steel Framed	U-0.124	R-13	U-0.124	R-13	U-0.352	NR
Wood Framed and Other	U-0.089	R-13	U-0.089	R-13	U-0.292	NR
<i>Wall, below Grade</i>						
Below Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR
<i>Floors</i>						
Mass	U-0.322	NR	U-0.322	NR	U-0.322	NR
Steel Joist	U-0.350	NR	U-0.350	NR	U-0.350	NR
Wood Framed and Other	U-0.282	NR	U-0.282	NR	U-0.282	NR

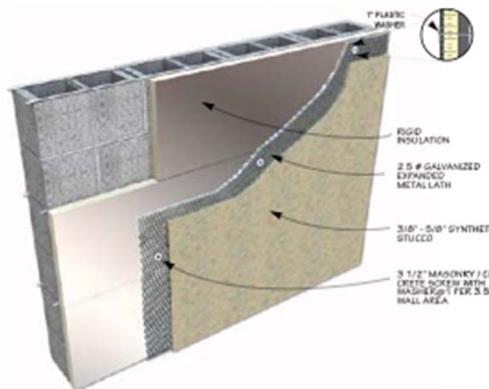

For Climate Zone 1 shows that mass walls above grade (CMU walls) do not require insulation when used in nonresidential construction.

62

Prescriptive R-Value Compliance

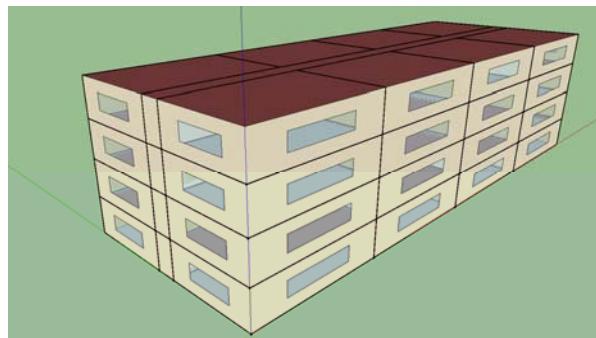
Continuous interior insulation:

- R 5.7 – Use 1.5 inches of Expanded Polystyrene - stucco ext. With finishes as shown - Solid grouting
- Using U-factor – 0.151
Can reduce $\frac{3}{4}$ " of insulation.



63

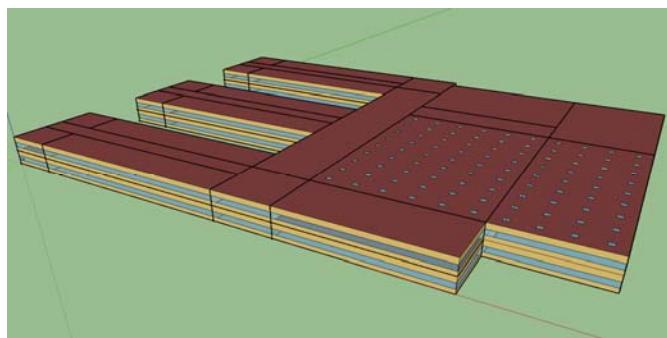
Prescriptive R-Value Compliance - Hawaii


Continuous exterior insulation:

- R 5.7 – Use 1.5 inches of Expanded Polystyrene - stucco ext. – Solid grouting
- Using U-factor – 0.151
Can reduce $\frac{3}{4}$ " of insulation.
-

64

Phase 1 - Evaluated 4 Prototype buildings typically using Masonry exterior Walls using COMCheck

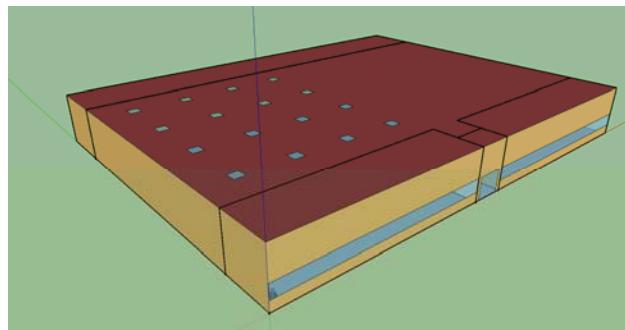


A. Midrise Apartment

The total floor area of the four story, DOE prototype midrise apartment building shown in Figure 1 is 33,741 ft² and it has an aspect ratio of 2.74. The window fraction for each orientation (north, south, east and west) is a constant 20%.

65

Phase 1 - Evaluated 4 Prototype buildings typically using Masonry exterior Walls using COMCheck

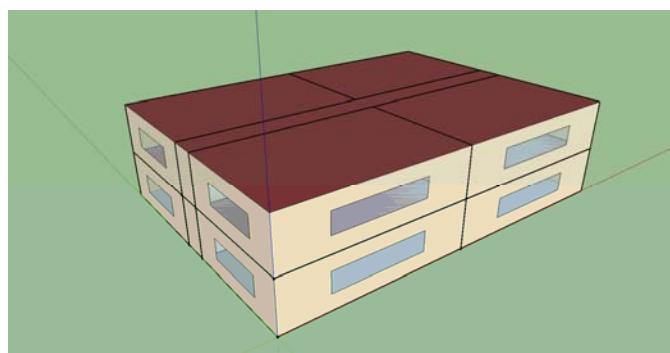


B. Secondary School

The total floor area of the two story, DOE defined secondary school building is 210,886 ft², with an aspect ratio of 1.4. The window fraction for each orientation (north, south, east and west) was a constant 33%, with ribbon windows across all facades, on both floors. Floor to floor height is 13 ft.

66

Phase 1 - Evaluated 4 Prototype buildings typically using Masonry exterior Walls using COMCheck



C. Stand-alone Retail

The total floor area of the one story, DOE prototype retail building is 24,692 ft², with an aspect ratio of 1.28. The floor to ceiling height is 20 ft. The window fraction is 7.1% in total, with windows located on the street facing façade only.

67

Phase 1 - Evaluated 4 Prototype buildings typically using Masonry exterior Walls using COMCheck

D. Low-rise Apartment - The total floor area of the two story, low-rise apartment building is 8,435 ft², with an aspect ratio of 1.37. This structure was based on the midrise apartment, but modified to represent a low-rise construction configuration common in Hawaii. The window fraction for each orientation (north, south, east and west) was a constant 20%.

68

COMcheck

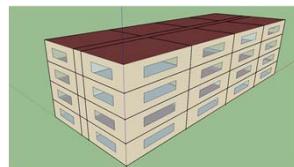
- easy way to take advantage of trade-offs, ie, increase roof insulation to reduce wall or window requirements.
- program shows if the envelope complies, and how close it is to compliance
- allows individual elements to be tweaked for compliance, revisions are quick and easy.
- **Trade offs are for envelope only**

From NCMA
Presentation

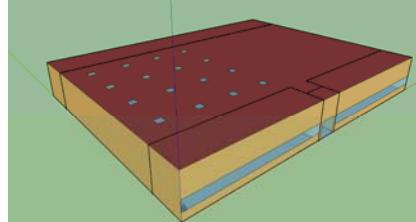
69

COMcheck

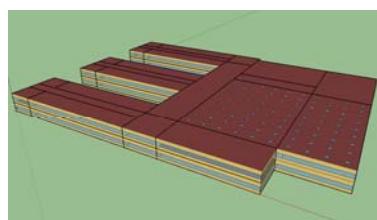
- The trade-off analysis clearly shows that, for the four prototype buildings investigated, no reasonable amount of roof insulation, or more thermally resistant windows could be used to make uninsulated fully grouted exterior concrete masonry or bare concrete walls code compliant through a trade-off analysis alone.

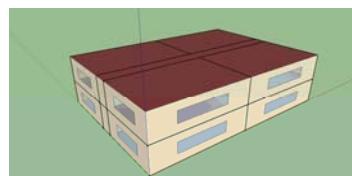

70

Phase 2 Whole Building Analysis - Using 4 Prototypes


- Energy Budget method requires same yearly energy cost of prototype configured to prescriptive requirements.
- Used Openstudio and Energy plus Programs – Looked at changes in envelopes and building systems that were expected to be minimum costs.
- Also conducted a economic analysis

71


Phase 2 Whole Building Analysis


A . Mid-rise Apartment

C. Stand-alone Retail

B. Secondary School

D . Low-rise Apartment

72

Baseline Configuration

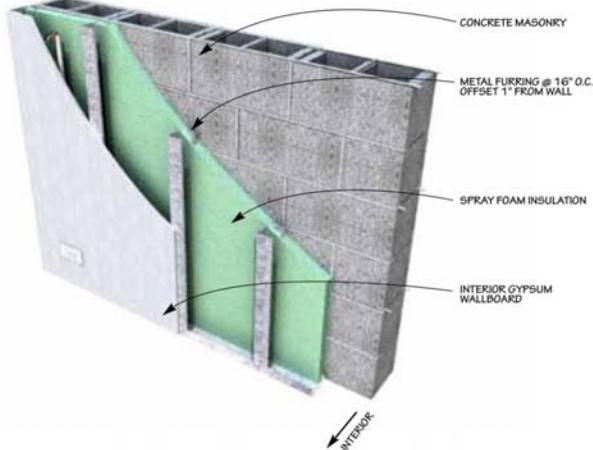


Figure 5 CMU Walls (8 in.) with Wall Insulation + 0.5 in. Gypsum Board

73

Baseline Exterior Wall

Table 1 Critical Exterior Wall Assembly Configuration Properties

Type of Wall	Wall Configurations	Conductivity (Btu-in/hr·ft ² ·R)	Specific Heat (Btu/lb·R)	U factor (Btu/ft ² ·hR)
Fully Grouted 105 pcf 8" CMU	Solid Grouted	8.400	0.209	0.528
Fully Grouted 120 pcf 8" CMU	Solid Grouted	9.600	0.211	0.566
Fully Grouted 130 pcf 8" CMU	Solid Grouted	10.7	0.220	0.591
Partially Grouted 8" CMU	Cells Insulated	3.248	0.162	0.294
Poured Concrete 120 pcf	Limestone Concrete	7.900	0.210	0.537
Poured Concrete 130 pcf	Sand and Gravel or Stone Aggregate Concrete	9.400	0.210	0.588
Poured Concrete 150 pcf	Sand and Gravel or Stone Aggregate Concrete	14.900	0.210	0.721

74

Baseline Exterior Wall

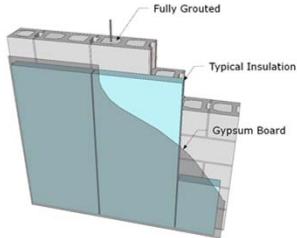


Figure 10 Exterior CMU Wall Case A

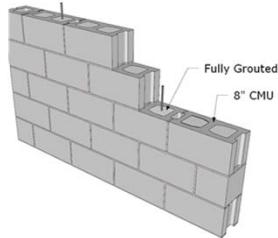


Figure 11 Exterior Wall Cases
105/120/130FM_B&D&F&G&H

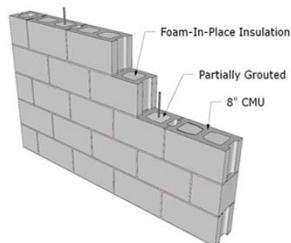


Figure 12 Exterior Wall Cases 105PM_B&D&F&G&H

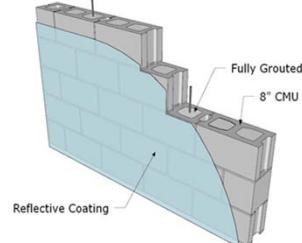


Figure 13 Exterior Wall Cases

75

Baseline Exterior Wall

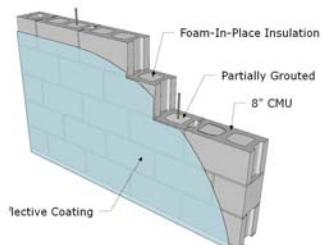


Figure 14 Exterior Wall Case 105PM_C&E

Figure 15 Exterior Wall for Case
120/130/150PC_B&D&F&G&H

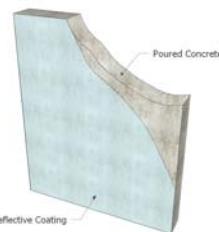


Figure 16 Exterior Wall Case 120/130/150PC_C&E

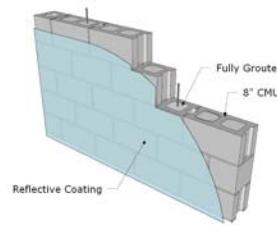


Figure 17 Exterior Wall Assumed when
Calculating Target U-factor

76

Baseline Exterior Wall

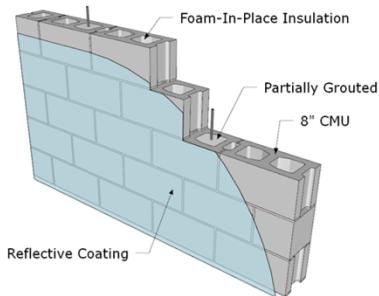


Figure 18 Exterior Wall Assumed when Calculating Target U-factor

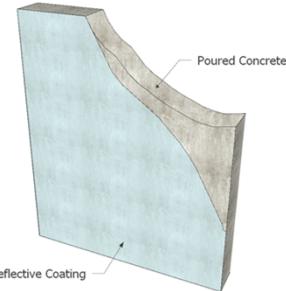


Figure 19 Exterior Wall Assumed when Calculating Target U-factor (concrete)

77

Whole Building Analysis Configurations

ALL CASE A (Include 105/120/130 pcf Fully Grouted CMU (105/120/130FM), 105 pcf Partially Grouted CMU (105PM), 120/130/150 pcf Poured Concrete (120/130/150 PC)) - The U-factor - 0.151 Btu/ft²hR. (Code minimum)

Case B

105 pcf Full Grouted CMU (105FM) CASE B -U-factor - 0.528 Btu/ft²hR.
120 pcf Full Grouted CMU (120FM) U-factor -0.566 Btu/ft²hR.
130 pcf Full Grouted CMU (130FM) - 0.591 Btu/ft²hR.
105 pcf Partially Grouted CMU (105PM) -U-factor- 0.294 Btu/ft²hR.
120 pcf Poured Concrete walls (120PC) -U-factor 0.537 Btu/ft²hR.
130 pcf Poured Concrete walls (130PC) -U-factor 0.588 Btu/ft²hR.
150 pcf Poured Concrete walls (150PC) -U-factor 0.721 Btu/ft²hR.

78

Whole Building Analysis Configurations

Case C – For all “C” cases, the exterior surface reflectance of the walls was increased to 0.64. (consistent with Hawaii Energy Code amendments for exceptions for lightweight walls).

Case D - Overhangs with a Projection Factor (PF) of 0.3 are added to all fenestrations in the basic (Case B) configurations.

Case E - Combined the Overhang of Case D and the increased wall reflectance of Case B.

Case F - Approximately twice the roof insulation was applied to the basic (CASE B) configurations (Roof U-factor decreased to 0.146 W/m²K (0.026 Btu/ft²hR)).

79

Whole Building Analysis Configurations

Case G - Lighting is a significant part of total energy use in most buildings, the impact of more efficient lighting was investigated. Although conventional wisdom suggests that LED lighting is much more efficient than conventional systems, a recent study by the DOE (“LED Replacements for Four-Foot Linear Fluorescent Lamps)[1], suggests that some fluorescent lamps can have similar luminaire efficacy (lumens/watt) as LEDs. Therefore, in this research, we assumed that there would only be a 10% reduction in lighting energy with LED lighting.

Case H – Higher efficiency HVAC systems were investigated. In this case, the HVAC system efficiency in the basic building configuration (case B) was increased. As per Trane product catalogs, models were listed that showed an increase from the Code minimum values of about 8% (based on EERE values). Thus, the HVAC coefficient of performance (COP) was increased by 8% in the EnergyPlus models.

80

Phase 2 Whole Building Analysis

- Typical baseline energy use

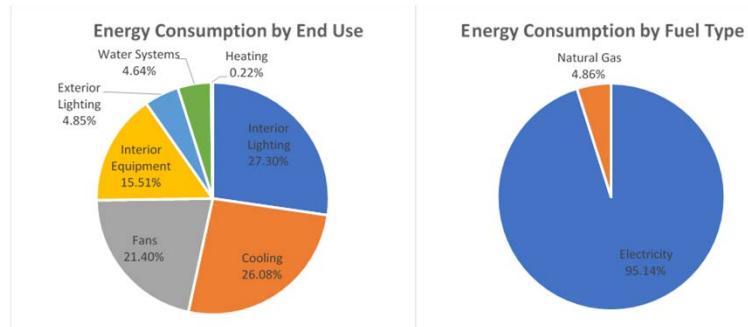


Figure 24 a) Stand-alone Retail Energy Use Break Down b) Stand-alone Retail Energy Use by Fuel

81

Phase 2 Whole Building Analysis

- Typical baseline energy use

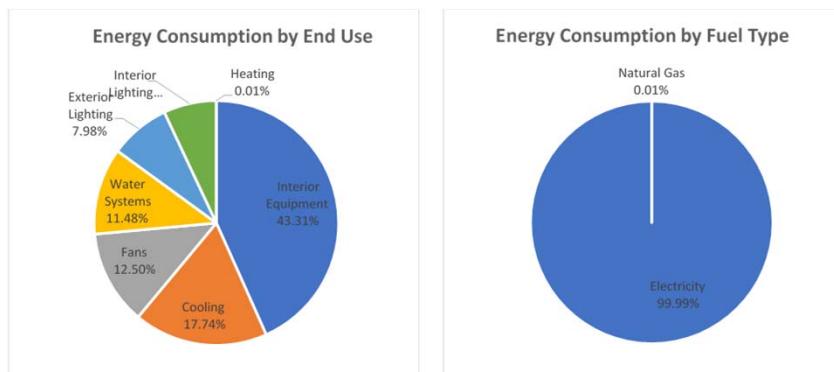


Figure 27 a) Low-rise Apartment Energy Use Break Down b) Low-rise Apartment Energy Use by Fuel

82

Phase 2 Whole Building Analysis

Table 3 Stand-alone Retail Energy Analyses - Partial

	U Factor (Btu/ft ² hR)	Case	Total Site Energy (GJ)	Electric Consumption (kWh)	Gas Consumption (MBtu)	Electric Peak Demand (kW)	Gas Peak Demand (kBtu/hr)	Change (%)	Net Cost (\$)	Energy Saved (\$/Year)	Payback Period (Year)
Fully Grouted 8"CMU (105pcf)	0.528	105FM_A	1259.23	332747.26	58.14	84.51	100.23				
		105FM_B	1366.69	362581.23	58.19	92.71	105.17	8.5%	-234383	-7460	31.4
		105FM_C	1261.89	333554.37	57.9	86.78	111.27	0.2%	-183705	-195	944.1
		105FM_D	1360.36	360828.51	58.18	93.16	105.15	8.0%	-232003	-7022	33.0
		105FM_E	1255.9	331889.7	57.97	87.26	103.75	-0.3%	-181325	219	-
		105FM_F	1341.91	355700.73	58.18	90.3	107.19	6.6%	-169523	-5740	Ø
		105FM_G	1316.84	348747.42	58.15	89.15	104.67	4.6%	*	*	*
		105FM_H	1337.91	354587.06	58.19	89.68	105.17	6.2%	*	*	*
Fully Grouted 8"CMU (120pcf)	0.566	120FM_A	1260.17	333008.73	58.13	84.49	100.38				
		120FM_B	1373.34	364430.67	58.19	92.98	106.08	9.0%	-234383	-7857	29.8
		120FM_C	1262.87	333813.64	57.95	86.81	100.54	0.2%	-183705	-196	938.1
		120FM_E	1257.26	332258.95	57.94	87.3	100.53	-0.2%	-181325	193	-
		120PM_A	1261.75	333421.53	58.22	84.24	101.32				
Partially Grouted 8" CMU (Cells Insulated)	0.294	120PM_B	1294.54	342517.31	58.27	87.23	104.07	2.6%	-230576	-2275	101.3
		120PM_C	1246.22	329184.87	57.96	84.44	100.1	-1.2%	-179898	1067	-
		120PM_D	1288.99	340972.56	58.28	87.75	103.85	2.2%	-228196	-1890	120.8
		120PM_E	1243.52	328433.51	57.97	85.04	100.09	-1.4%	-177518	1255	-
		120PM_F	1288.7	340852.76	58.41	85.43	104.3	2.1%	-165716	-1864	Ø
		120PM_G	1242.29	328010.81	58.25	83.59	103.51	-1.5%	*	*	*
		120PM_H	1268.62	335318.59	58.27	84.5	104.07	0.5%	*	*	*

83

Phase 2 Whole Building Analysis

Table 4 Secondary School Energy Analyses- Partial

	U Factor (Btu/ft ² hR)	Case	Total Site Energy (GJ)	Electric Consumption (kWh)	Gas Consumption (MBtu)	Electric Peak Demand (kW)	Gas Peak Demand (kBtu/hr)	Difference (%)	Net Cost (\$)	Energy Saved (\$/Year)	Payback Period (Year)
Fully Grouted 8"CMU (105pcf)	0.528	105FM_A	12594.8	3178901.22	1090.71	778.63	869.78				
		105FM_B	13287.92	3364014.31	1116.02	811.49	1038.88	5.5%	-1188422	-47038	25.3
		105FM_C	12714.9	3212337.67	1090.45	786.74	970.02	1.0%	-931466	-8351	111.5
		105FM_D	13078.43	3316795.19	1078.58	792.79	1004.07	3.8%	-1129166	-34110	33.1
		105FM_E	12524.39	3168140.03	1060.69	768.11	945.38	-0.6%	-872210	3591	-
		105FM_F	13166.46	3334857.83	1100.39	800.4	985.35	4.5%	-851906	-39280	Ø
		105FM_G	12976.34	3278013.43	1114.16	791.29	1028.84	3.0%	*	*	*
		105FM_H	13200.52	3339736.81	1116.02	803.65	1038.88	4.8%	*	*	*
Fully Grouted 8"CMU (120pcf)	0.566	120FM_A	12593.65	3178322.45	1091.59	779.42	867.28				
		120FM_B	13324.74	3371894.93	1124.04	816.54	1060.24	5.8%	-1188422	-49367	24.1
		120FM_C	12730.72	3215417.35	1094.94	789.43	984.7	1.1%	-931466	-9374	99.4
		120FM_E	12556.28	3176329.66	1062.97	767.21	939.53	-0.3%	-872210	1357	-
		130FM_A	12598.15	3178932	1093.77	777.77	863.32				
Fully Grouted 8"CMU (130pcf)	0.591	130FM_B	13418.9	3398715.21	1121.77	809.11	1053.88	6.5%	-1188422	-56004	21.2
		130FM_C	12769.86	3226513.65	1094.17	784.71	974.42	1.4%	-931466	-12125	76.8
		130FM_E	12586.59	3184245.28	1064.69	765.87	940.87	-0.1%	-872210	-674	-
		120PM_A	12602.25	3182026.68	1087.1	775.74	854.84				
Partially Grouted 8"CMU (Cells Insulated)	0.294	120PM_B	12874.97	3259852.18	1080.04	786.53	923.16	2.2%	-1169150	-19245	60.8
		120PM_C	12521.71	3164384.37	1070.96	774.42	890.13	-0.6%	-912194	4895	-
		120PM_D	12680.99	3214442.71	1051.13	767.54	890.46	0.6%	-1109894	-7025	158.0

84

Phase 2 Whole Building Analysis

Table 5 Mid-rise Apartment Energy Analysis - Partial

	U Factor (Btu/ft ² hR)	Case	Total Site Energy (GJ)	Electric Consumption (kWh)	Gas Consumption (MBtu)	Electric Peak Demand (kW)	Gas Peak Demand (kBtu/hr)	Difference (%)	Net Cost (\$)	Energy Saved (\$/Year)	Payback Period (Year)
Fully Grouted 8"CMU (105pcf)	0.151	105FM_A	1441.47	400398.66	0.03	99.21	0.71				
		105FM_B	1603.11	445292.91	0.06	109.14	1.62	11.2%	-307070	-11224	27.4
		105FM_C	1485.1	412515.1	0.04	103.67	2.26	3.0%	-240677	-3029	79.4
		105FM_D	1580.89	439119.52	0.05	109.64	1.59	9.7%	-298363	-9681	30.8
	0.528	105FM_E	1465.54	407083.41	0.04	103.5	2.2	1.7%	-231970	-1671	138.8
		105FM_F	1595.51	443181.99	0.06	108.86	1.44	10.7%	-284913	-10697	26.6
		105FM_G	1588.09	441119.29	0.05	108.4	1.65	10.2%	*	*	*
		105FM_H	1571.61	436542.46	0.06	107.32	1.62	9.0%	*	*	*
Fully Grouted 8"CMU (120pcf)	0.151	120FM_A	1440.5	400129.41	0.03	99.1	0.63				
		120FM_B	1601.4	444817.21	0.05	109.15	1.64	11.2%	-307070	-11173	27.5
		120FM_C	1491.04	414165.85	0.04	104.17	2.4	3.5%	-240677	-3509	68.6
	0.566	120FM_E	1459.56	405421.52	0.04	103.07	2.18	1.3%	-231970	-1323	175.3
	0.151	130FM_A	1439.83	399942.99	0.03	99.02	0.63				
		130FM_B	1603.45	445386.63	0.06	110.18	1.63	11.4%	-307070	-11315	27.1
	0.591	130FM_C	1478.82	410771.94	0.04	103.79	1.94	2.7%	-240677	-2661	90.4
		130FM_E	1459.76	405478.24	0.04	103.36	2.11	1.4%	-231970	-1338	173.4
Partially Grouted 8"CMU (Cells Insulated)	0.151	120PM_A	1438.64	399611.13	0.04	98.86	0.58				
		120PM_B	1505.56	418198.21	0.04	103.28	0.81	4.7%	-302091	-4647	65.0
		120PM_C	1440.81	400215.41	0.04	100.37	1.23	0.2%	-235697	-151	1560.2
		120PM_D	1485.51	412629.77	0.04	102.58	0.76	3.3%	-293384	-3255	90.1
	0.294	120PM_E	1420.76	394645.21	0.03	99.9	1.18	-1.2%	-226990	1242	-
		120PM_F	1496.94	415804.91	0.04	102.94	0.62	4.1%	-279934	-4048	69.1
		120PM_G	1490.54	414028.24	0.04	102.49	0.8	3.6%	*	*	*
		120PM_H	1477.24	410331.08	0.04	101.76	0.81	2.7%	*	*	*

85

Phase 2 Whole Building Analysis

Table 6 Low-rise Apartment Energy Analysis - Partial

	U Factor (Btu/ft ² hR)	Case	Total Site Energy (GJ)	Electric Consumption (kWh)	Gas Consumption (MBtu)	Electric Peak Demand (kW)	Gas Peak Demand (kBtu/hr)	Percentage Difference (%)	Extra Cost (\$)	Energy Saved (\$/Year)	Payback Period (Year)
Fully Grouted 8"CMU (105pcf)	0.197	105FM_A	523.48	145394.46	0.06	36.13	0.66				
		105FM_B	568.1	157785.72	0.07	38.96	0.73	8.5%	-97300	-3098	31.4
		105FM_C	529.54	147077.23	0.06	37.15	0.87	1.2%	-76262	-421	181.3
		105FM_D	561.33	155905.65	0.07	38.77	0.71	7.2%	-94518	-2628	36.0
	0.528	105FM_E	523.55	145414.62	0.06	37	0.84	0.0%	-73480	-5	14579.3
		105FM_F	565.41	157037.47	0.07	38.86	0.73	8.0%	-75143	-2911	25.8
		105FM_G	563.04	156379.36	0.07	38.74	0.71	7.6%	*	*	*
		105FM_H	558.77	155192.17	0.07	38.43	0.73	6.7%	*	*	*
Fully Grouted 8"CMU (120pcf)	0.197	120FM_A	523.09	145285.01	0.06	36.08	0.66				
		120FM_B	568	157757.29	0.07	38.97	0.73	8.6%	-97300	-3118	31.2
		120FM_C	527.6	146539.2	0.06	37.01	0.86	0.9%	-76262	-314	243.2
	0.566	120FM_E	525.34	145912.71	0.06	37.15	0.85	0.4%	-73480	-157	468.2
	0.197	130FM_A	522.77	145197.58	0.06	36.04	0.66				
		130FM_B	568.8	157977.96	0.07	39	0.74	8.8%	-97300	-3174	30.7
	0.591	130FM_C	527.52	146516.64	0.06	37.08	0.87	0.9%	-76262	-308	247.7
		130FM_E	521.62	144879.37	0.06	36.93	0.84	-0.2%	-73480	101	-
Partially Grouted 8"CMU (Cells Insulated)	0.197	120PM_A	522.08	145005.39	0.06	36.02	0.66				
		120PM_B	538.02	149432.32	0.06	37.06	0.7	3.1%	-95722	-1107	86.5
		120PM_C	516.3	143400.91	0.06	36.06	0.64	-1.1%	-74684	401	-
		120PM_D	531.22	147544.03	0.06	36.81	0.69	1.8%	-97940	-635	146.4
		120PM_E	509.91	141624.77	0.06	35.88	0.64	-2.3%	-71902	845	-
		120PM_F	535.09	148617.15	0.06	36.95	0.7	2.5%	-73565	-903	81.5
		120PM_G	532.93	148018.62	0.06	36.84	0.69	2.1%	*	*	*
		120PM_H	529.68	147116.04	0.06	36.63	0.7	1.5%	*	*	*

86

Phase 2 Whole Building Analysis

Investigated coating alone

Table 7 Target Exterior Wall U-factors for Code Compliance with Reflective Coatings

Prototype	Wall Type	Target U factor (Btu/ft ² hrF)
Stand-alone Retail	Solid Grouted	0.534
	Partially Grouted	0.474
	Poured Concrete	0.568
Secondary School	Solid Grouted	0.402
	Partially Grouted	0.418
	Poured Concrete	0.397
Mid-rise Apartment	Solid Grouted	0.369
	Partially Grouted	0.338
	Poured Concrete	0.391
Low-rise Apartment	Solid Grouted	0.380
	Partially Grouted	0.344
	Poured Concrete	0.397

87

Phase 2 Whole Building Analysis

For partially grouted, foamed and coated masonry walls

Prototype	3 Web CMU	2 Web CMU	1 Web CMU
Stand-alone Retail	85.7%	86.0%	86.4%
Secondary School	70.5%	73.1%	74.5%
Mid-rise Apartment	48.9%	54.7%	57.4%
Low-rise Apartment	50.5%	56.1%	58.7%

88

Conclusions

- For all four prototypes (Stand-alone retail, secondary schools, mid-rise apartments and low-rise apartments), adding reflective coating is an efficient method for reducing the energy use in Hawaii's climate. In a number of exterior wall configurations, this reflective coating alone is sufficient to produce equivalent energy performance.

89

Conclusions

- Combining reflective coatings with overhangs produce code compliant configurations for the Stand-alone retail, and secondary school prototype buildings. For solidly grouted CMU walls, overhangs and coatings produce yearly energy use values within 1% of the baseline values in all cases and prototypes. They are thus very close to being code compliant.

90

Conclusions

- Reflective coatings and window shades (overhangs) have the greatest impact on energy use in the range of building types investigated. In every case addressed, the coatings and overhangs were able to reduce the yearly energy consumption values either below the baseline configuration (and code compliant), or to low enough levels of energy consumption that the difference between the baseline energy yearly costs would take well beyond the typical building design life to payback

91

J.B. SPEED SCHOOL
OF ENGINEERING

THANK YOU !

QUESTIONS?

m.mcginley@louisville.edu

Masonry Institute of Hawaii

Masonry Institute of Hawaii

92